Let me just write down the Tietze transformation process:
Let $G = \langle X_G|R_G \rangle$. For clarity, take $X_H = X_G$ and $R_H = R_G$ so $H = G$. Also, for $y \in X_H$, write $y_G$ to mean the same element, but regarded as an element of $X_G$ instead. Note that, since $\varphi$ represents the conjugation action of $G$ on itself, we have, by definition, $\varphi(y)(x) = y_Gx(y_G)^{-1}$ for all $x \in X_G$, $y \in X_H$.
Now, $G \rtimes_\varphi G = G \rtimes_\varphi H$ can be presented by,
$$\langle X_G \cup X_H|R_G \cup R_H \cup \{yxy^{-1} = \varphi(y)(x)|x \in X_G, y \in X_H\}\rangle$$
Replacing $\varphi(y)(x)$ by its definition, we rewrite this as,
$$\langle X_G \cup X_H|R_G \cup R_H \cup \{yxy^{-1} = y_Gx(y_G)^{-1}|x \in X_G, y \in X_H\}\rangle$$
For each $y \in X_H$, add a new generator $y’ = (y_G)^{-1}y$,
$$\langle X_G \cup X_H \cup \{y’|y \in X_H\}|R_G \cup R_H \cup \{yxy^{-1} = y_Gx(y_G)^{-1}|x \in X_G, y \in X_H\} \cup \{y’ = (y_G)^{-1}y|y \in X_H\}\rangle$$
Since $y = y_Gy’$ follows from the relation $y’ = (y_G)^{-1}y$, and noting that $y_G \in X_G$ by definition, we may remove the generators in $X_H$,
$$\langle X_G \cup \{y’|y \in X_H\}|R_G \cup \{w(y_Gy’)|w \in R_H\} \cup \{y_Gy’x(y’)^{-1}(y_G)^{-1} = y_Gx(y_G)^{-1}|x \in X_G, y \in X_H\} \cup \{y’ = (y_G)^{-1}y_Gy’|y \in X_H\}\rangle$$
The relations $y’ = (y_G)^{-1}y_Gy’$ are trivial and can be removed. The relations $y_Gy’x(y’)^{-1}(y_G)^{-1} = y_Gx(y_G)^{-1}$ is easily seen to be equivalent to $y’x = xy’$, so,
$$\langle X_G \cup \{y’|y \in X_H\}|R_G \cup \{w(y_Gy’)|w \in R_H\} \cup \{y’x = xy’|x \in X_G, y \in X_H\}\rangle$$
Renaming $y’$ back to $y$,
$$\langle X_G \cup X_H|R_G \cup \{w(y_Gy)|w \in R_H\} \cup \{yx = xy|x \in X_G, y \in X_H\}\rangle$$
Under the relations $yx = xy$ (and recalling $y_G \in X_G$), inducting on words, we see that $w(y_Gy) = w(y_G)w(y)$. Then, under the relations in $R_G$ - which equals $R_H$ and so, recalling also that $X_G = X_H$, is equal to $\{w(y_G)|y \in X_H\}$, we see that $w(y_Gy) = 1$ is equivalent to $w(y) = 1$. Thus, we may replace $\{w(y_Gy)|w \in R_H\}$ by $\{w(y)|w \in R_H\} = R_H$.
$$\langle X_G \cup X_H|R_G \cup R_H \cup \{yx = xy|x \in X_G, y \in X_H\}\rangle$$
This is, of course, a presentation of $G \times H = G \times G$.