The value of
$$
\det ([x^j]f^i)_{1 \le i,j \le n}
$$
does not depend on $a_0$: If $g(x) = f(x) + C$ for some constant $C$ then each row of
$$
\det ([x^j]g^i)_{1 \le i,j \le n}
$$
is equal to the corresponding row of $ \det ([x^j]f^i)_{1 \le i,j \le n}
$ plus multiples of the previous rows. By elementary rules for the determinant it follows that
$$
\det ([x^j]f^i)_{1 \le i,j \le n} = \det ([x^j]g^i)_{1 \le i,j \le n} \, ,
$$
which means that you can assume $a_0 \ne 0$ for your calculations.
Alternatively, note that your determinant is equal to
$$
g_n := W\left(\frac{f'}{1!}, \frac{(f^2)'}{2!}, \ldots, \frac{(f^n)'}{n!}\right)
$$
evaluated at $x=0$. Here $W$ denotes the Wronskian determinant. We have
$$
\begin{align}
g_n &= W\left(f', \frac{f f'}{1!}, \ldots, \frac{f^{n-1} f'}{(n-1)!}\right) \\
&\overset{(*)}{=} (f')^n \cdot W\left(1, \frac{f }{1!}, \ldots, \frac{f^{n-1} }{(n-1)!}\right) \\
&= (f')^n \cdot W\left(\frac{f' }{1!}, \ldots, \frac{(f^{n-1})' }{(n-1)!}\right)\\
&= (f')^n \cdot g_{n-1} \, .
\end{align}
$$
At $(*)$ we used the “product rule” for Wronsktians, see for example Why does the Wronskian satisfy $W(yy_1,\ldots,yy_n)=y^n W(y_1,\ldots,y_n)$?.
Also $g_1 = f'$, so that
$$
g_n = (f')^{n(n+1)/2}
$$
by induction.
Yet another way is to use the “chain rule for Wronskians”:
$$
\begin{align}
g_n(x) &= W\left(1, \frac{f}{1!}, \frac{f^2}{2!}, \ldots, \frac{f^n}{n!}\right)(x) \\
&= W\left(1, \frac{x}{1!}, \frac{x^2}{2!}, \ldots, \frac{x^n}{n!}\right)(f(x)) \cdot (f'(x))^{n(n+1)/2} \\
&= (f'(x))^{n(n+1)/2}
\end{align}
$$
because $ W\left(1, \frac{x}{1!}, \frac{x^2}{2!}, \ldots, \frac{x^n}{n!}\right) = 1$.