We will assume here that the slope of the line emanating from $(-1,y_{-1})$ is $t>0$. First, note that in the interval $[-1,1]$, the graph produced by realizations of the random variables $y_{-1}:=a, y_1:=b$ with PDF $f(x), x\geq 0$ can be written piecewise
$$y_{a,b}(x)=\begin{Bmatrix}(t(x+1)+a)\theta(x-\frac{b-a}{2t})+(t(1-x)+b)\theta(-x+\frac{b-a}{2t})&|b-a|\leq 2t\\t(x+1)+a&b-a>2t\\ t(1-x)+b&b-a<-2t\end{Bmatrix}$$
where the Heaviside function has been used to reduce clutter. This problem now reduces to computing the integral
$$E[y(x)]=\int_{[0,\infty]^2}dadbf(a)f(b)y_{a,b}(x)=\int_{-\infty}^{+\infty}dD\int^\infty_{\max(0,-D)}f(A)f(D+A)y_{A, D+A}(x)dA$$
where in the second equality we performed the change of variables $D=b-a, A=a$, which simplifies the regions of $y(x)$ considerably. Due to the presence of the max function in the inner integral, we have to split the integrand according to the sign of $D$ as well. After considering all possible regions and massaging, one can show that
$$E[y(x)]_{x>0}=\int_{0}^{\infty}dD\int_{0}^{\infty}dAf(A)f(D+A)(t(1+x)+A)+
\\\int^{0}_{-\infty}dD\int_{-D}^{\infty}dAf(A)f(D+A)(t(1-x)+D+A)+\int_{0}^{2tx}dD\int_{0}^{\infty}dAf(A)f(D+A)(D-2tx)$$
$$E[y(x)]_{x<0}=\int_{0}^{\infty}dD\int_{0}^{\infty}dAf(A)f(D+A)(t(1+x)+A)+
\\\int^{0}_{-\infty}dD\int_{-D}^{\infty}dAf(A)f(D+A)(t(1-x)+D+A)+\int^{0}_{2tx}dD\int_{-D}^{\infty}dAf(A)f(D+A)(2tx-D)$$
For $a,b\sim \text{Exp}(\lambda)$, the integrals are elementary, yielding the tidy result
$$E[y(x)]=t+\frac{1}{2\lambda}+\frac{1-2\lambda t|x|-e^{-2\lambda t|x|}}{2\lambda}$$
It is not hard to show that the expectation value is $C^2(-1,1)$, so its graph appears smooth.