2

I would like to know where I have gone wrong here (apologies for any inconsistent notation)

$$\begin{align} \sin\left(\frac {4\pi}{9}\right) &= \frac{1}{2i}\left( e^{ i\,\frac{4\pi}{9}} - e^{-i\,\frac{4\pi}{9}} \right) \tag1\\[4pt] &= \frac{1}{2i}\left( e^{i\pi\,\frac{4}{9}} - e^{i\pi\,\frac{-4}{9}} \right) \tag2 \\[4pt] &= \frac1{2i}\left((-1)^{4/9} - (-1)^{-4/9} \right) \tag3 \\[4pt] &= \frac1{2i}\left(\sqrt[9]{1} - \sqrt[9]{1} \right) \tag4 \\[4pt] &= \frac{0}{2i} \tag5 \\[4pt] &= 0 \tag6 \end{align}$$

Blue
  • 83,939
uhhhh
  • 39
  • Thanks for welcoming me! Does this hold true for all fractional powers of negative numbers, or are there cases where they are defined? @J.W.Tanner – uhhhh Mar 04 '25 at 02:09
  • 1
    @uhhhh This may be of some interest. – FishDrowned Mar 04 '25 at 02:44