See the answer as an alternative. Ths general form is given by
$$\sum_{n=1}^{\infty} \frac{H_{\alpha n}}{n^{2}}=\frac{1}{2}\left(\alpha^{2}+\frac{3}{\alpha}\right) \zeta(3)-\frac{\pi}{2 \alpha} \sum_{k=1}^{\alpha-1} \cot \left(\frac{\pi k}{\alpha}\right) \psi^{(1)}\left(\frac{k}{\alpha}\right),
$$
$${\sum_{n=1}^{\infty} \frac{H_{\alpha n}}{n^{4}}=\frac{1}{2}\left(\alpha^{4}+\frac{5}{\alpha}\right) \zeta(5)-\frac{\pi^2\alpha^2}{6}\zeta(3) -\frac{\pi}{12 \alpha} \sum_{k=1}^{\alpha-1} \cot \left(\frac{\pi k}{\alpha}\right) \psi^{(3)}\left(\frac{k}{\alpha}\right)},
$$
which explains
$$
\begin{aligned}
&\int_{0}^{1} \frac{\ln^2(1-x)}{x} \text{d}x=2\zeta(3),\\
&\int_{0}^{1} \frac{\ln(1-x)\ln(1+x)}{x} \text{d}x=-\frac{5}{8}\zeta(3),\\
&\int_{0}^{1} \frac{\ln(1-x)\ln(1+x^2)}{x} \text{d}x=\frac{23}{32}\zeta(3)-\frac{\pi}{2}G, \\
&\int_{0}^{1} \frac{\ln(1-x)\ln(1+x+x^2)}{x}\text{d}x=-\frac{1}{3} \zeta(3)-
\frac{\pi}{18\sqrt{3} } \left [ \psi^{(1)}\left ( \frac{1}{3} \right )-\psi^{(1)}\left ( \frac{2}{3} \right )\right ],\\ \\
& \int_{0}^{1} \frac{\text{Li}_2^2(x)}{x}\text{d}x=\frac{\pi^2}{3}\zeta(3)-3\zeta(5),\\
&\int_{0}^{1} \frac{\text{Li}_2(x)\text{Li}_2(x^2)}{x}\text{d}x=\frac{\pi^2}{4}\zeta(3)-\frac{37}{16}\zeta(5),\\
&\int_{0}^{1} \frac{\text{Li}_2(x)\text{Li}_2(x^3)}{x}\text{d}x=\frac{2\pi^2}{9}\zeta(3)-\frac{124}{27}\zeta(5)
+\frac{\pi}{324\sqrt{3} } \left [ \psi^{(3)}\left ( \frac{1}{3} \right )-\psi^{(3)}\left ( \frac{2}{3} \right )\right ],\\
&\int_{0}^{1} \frac{\text{Li}_2(x)\text{Li}_2(x^4)}{x}\text{d}x=\frac{5\pi^2}{24}\zeta(3)-\frac{1029}{128}\zeta(5)+2\pi\beta(4).
\end{aligned}
$$