I tried to show that $X_n \xrightarrow{\text{a.s.}} X \Rightarrow X_n \xrightarrow{\text{P}} X$, but my proof is little different from ones I've seen because it works with the limit definition. I feel uneasy about a step in the middle involving selecting the maximum $M$ (Because $M$ might depend on the $\omega$ that we're dealing with, and $\Omega$ could be infinite). I'm also unsure if some of this logic works in general (Like for example putting the limit definition in the probability measure).
Let $X_n \xrightarrow{\text{a.s.}} X$. Then $$\mathbb{P}(\{\omega \in \Omega: X_n(\omega) \rightarrow X(\omega)\}) = 1 \\ \Rightarrow \mathbb{P}(\{\omega \in \Omega: \forall \varepsilon>0, \exists M \in \mathbb{N} \: \text{s.t.} \: \forall m \geq M, \;\; |X_m(\omega) - X(\omega)| < \varepsilon\}) = 1$$
Now let: $$\epsilon > 0, \delta >0. \:\text{Let} \: N \in \mathbb{N}\: (=\max_{\omega \in \Omega}{M_{\epsilon}(\omega)}). \forall n \geq N, \forall \omega \in \Omega \setminus \mathcal{N}, |X_n(\omega) - X(\omega)| < \epsilon \: \text{(Drawing on above)}$$
Where $\mathcal{N}$ denotes the union of $\mathbb{P}$-null sets.
Thus: $$\mathbb{P}(\{\omega \in \Omega : |X_n(\omega)-X(\omega)| > \epsilon \}) = \mathbb{P}(\{\omega \in \mathcal{N}: |X_n(\omega)-X(\omega)| > \epsilon \}) + \mathbb{P}(\{\omega \in \Omega \setminus \mathcal{N}: |X_n(\omega)-X(\omega)| > \epsilon \}) = 0 < \delta$$
And thus we've shown: $$\forall \epsilon > 0, \lim_{n \rightarrow \infty} \mathbb{P}(\{\omega \in \Omega :|X_n(\omega) - X(\omega)| > \epsilon\}) = 0 \Rightarrow X_n \xrightarrow{\text{P}}X$$
If the above doesn't work, is it possible to show this somehow using the limit construction formally? Thanks.