Let $d=\gcd(2a+b,b^5-a^5)$.
Let $e=\gcd(a,d)$.
From $e{\,\mid\,}d$, we get $e{\,\mid\,}2a+b$.
From $e{\,\mid\,}a$ and $e{\,\mid\,}2a+b$, we get $e{\,\mid\,}b$.
Thus $e{\,\mid\,}a$ and $e{\,\mid\,}b$, hence $e=1$ (since $\gcd(a,b)=1$).
From $d{\,\mid\,}2a+b$, we get $b\equiv -2a\;(\text{mod}\;d)$, hence
\begin{align*}
&
d{\,\mid\,}b^5-a^5
\\[4pt]
\implies\;&
b^5-a^5\equiv 0\;(\text{mod}\;d)
\\[4pt]
\implies\;&
(-2a)^5-a^5\equiv 0\;(\text{mod}\;d)
\\[4pt]
\implies\;&
-33a^5\equiv 0\;(\text{mod}\;d)
\\[4pt]
\implies\;&
33\equiv 0\;(\text{mod}\;d)
\qquad\bigl(\text{since $\gcd(a,d)=1$}\bigr)
\\[4pt]
\implies\;&
d{\,\mid\,}33
\\[4pt]
\end{align*}
so $1,3,11,33$ are the only possible values of $d$.
Finally, the examples
\begin{array}
{|c|c|c|c|c|}
\hline
a&b&2a+b&b^5-a^5&d\\
\hline
1&-1&1&-2&1\\
\hline
1&1&3&0&3\\
\hline
1&9&11&59048=11{\,\cdot\,}5368&11\\
\hline
1&31&33&28629150=33{\,\cdot\,}867550&33\\
\hline
\end{array}
show that each of the values $1,3,11,33$ is, in fact, a realizable value of $d$.