I think the situation is similar to that in algebra. In elementary school, you learned that $1+1=2$. It was kinda obvious, right? In rigorous advanced algebra, however, you first have to define “$1$”, “$2$”, “$+$” and then you must prove that $1+1=2$.
Similarly, probability theory at an undergraduate level uses some informal but intuitively sound notions when introducing the basics and how those foundations are built are largely left unsaid, presumably because the focus at this level ought to be on more interesting topics relying on these basics, such as combinatorics, distribution theory, statistics, practical applications, and so forth.
Only at a more advanced level do you realize that the foundations of probability theory are basically the same as those of measure theory under the special assumption that the measure of the whole space is normalized to one. The constructions and results from measure theory help you build a rigorous and consistent theory about what events and probabilities really are. The point is that at this higher level, there are no loose ends left and informal concepts that you were accustomed to during your undergraduate training (and accepted them without many reservations, since they felt intuitively right) are placed on rock-solid theoretical grounds.