Suppose for a contradiction that the weak$^*$ closure $cl(im(A^*))$ is not equal to $\ker(A)^\perp$. Then, there exists $f\in\ker(A)^\perp$, $f\notin cl(im(A^*))$. By Hahn-Banach theorem, there exists a weak$^*$ continuous linear functional $\mu:X^*\to\mathbb{K}$ such that $$\mathbf{\mu(f) = 1}, \hspace{4mm} cl(im(A^*))\subseteq \ker\mu. $$
Since $\mu$ is weak$^*$ continuous, $\exists x_0\in X \hspace{2mm} \mu(f)=f(x_0)\hspace{2mm}\forall f\in X^*$.
$cl(im(A^*))\subseteq ker\mu
\Rightarrow \mu(A^*g) = 0 \hspace {2mm} \forall g\in Y^*
\Rightarrow g(Ax_0) = 0 \hspace {2mm} \forall g\in Y^*
\Rightarrow Ax_0=0 \Rightarrow \mathbf{f(x_0)=0}$. Contradiction.
Note: For the weak$^*$ continuous linear functionals on $X^*$, please see what follows:
Let $Z$ be a locally convex topological vector space with the set of seminorms $\mathcal{F}$ generating its topology. Let $Y$ be a Banach space, $T:Z\to Y$ be a linear operator.
- $T$ is continuous $\Leftrightarrow\exists E\subseteq\mathcal{F}$ finite $\exists M>0\hspace{2mm}\forall x\in X \hspace{3mm} \|Tx\|\leq M\sup_{p\in E}p(x)$.
Proof: $(\Rightarrow)$ Since $T$ is continuous at $0$, there is an open neighborhood $V$ of $0$ such that $\forall x\in V$, $\|Tx\|\leq 1$. WLOG $$V=\bigcap_{p\in E} p^{-1}(B_r(0))=r\bigcap_{p\in E} p^{-1}(B_1(0))$$ for some $r>0$ and finite $E\subseteq\mathcal{F}$. Then, $\|Tx\|\leq 1/r$ whenever $p(x)<1$ $\forall p\in E$.
For each $\delta>0$, let $y_{\delta}=x/\left(\delta+\sup_{p\in E}p(x)\right)$. Clearly, $p(y_{\delta})<1$ so $\|Ty_{\delta}\|\leq 1/r$. It follows that, $$\|Tx\|\leq \frac{1}{r} \left(\delta+\sup_{p\in E}p(x)\right).$$ Letting $\delta \to 0$, we obtain the result with $M=1/r$.
$(\Leftarrow)$ Let $(x_{\alpha})$ be a net such that $x_{\alpha}\to x$. By definition, $p(x_{\alpha})\to p(x)$ for all $p\in\mathcal{F}$. Hence $\|Tx_{\alpha} - Tx\|\to 0$.
- Suppose $\mathcal{F}$ is a set of linear functionals on $Z$, i.e., every $p\in\mathcal{F}$ is of the form $p(x)=|f(x)|$ for some linear $f:Z\to\mathbb{C}$.
The following are equivalent.
- i. $Tx=\sum_{k=1}^n f_k(x)y_k$ for some $f_1,\dots,f_n\in\mathcal{F}$ and $y_1,\dots,y_n\in Y$.
- ii. $Tx = W(f_1(x),\dots,f_n(x))$ for some linear $W:\mathbb{C}^n\to Y$.
- iii. $\exists M>0\hspace{2mm}\forall x\in X\hspace{3mm}\|Tx\|\leq M\sup_k|f_k(x)|$. (that is, $T$ is continuous)
- iv. $\ker{T}\supseteq\bigcap_{k=1}^n\ker{f_k}$.
Proof: $(i\Rightarrow ii\Rightarrow iii\Rightarrow iv)$ is straightforward. The reader only needs to prove $(iv\Rightarrow i)$.
- Thus, when $Y=\mathbb{C}$ in (2.), then $T\in\mathcal{F}$. Additionally, when $Z=X^*$ and $\mathcal{F}=X$, then $T:X^*\to\mathbb{C}$ is weak$^*$ continuous iff $T\in X$.