Let $f$ be an open and perfect mapping from $X$ to $Y$. Let $A \subset Y$ and let $y \in \overline{A}$, then whether it is true that $f^{-1}(y) \subset \overline{f^{-1}(A)}$.
I have assumed that $y \in \overline{A} \setminus A$. Let $x = f^{-1}(y)$ i.e. $f(x) = y$. Let $U$ be any open set containing $x$, then I need to show that $U$ intersects with ${f^{-1}(A)}$.
Now $f(x) \in f(U)$ which implies that $f(U) \cap A \neq \emptyset$
i.e. $f^{-1}(f(U) \cap A) \neq \emptyset$
i.e. $f^{-1}(f(U)) \cap f^{-1}(A) \neq \emptyset$.
But this doesn't imply that $U$ intersects with $f^{-1}(A).$
Am I missing some concept to get the required result?
Please clarify on this.