I stumbled on a double integral $$\int_0^{\infty}\int_0^{\infty}e^{-x} e^{-y}y^n \cosh\left(2c\sqrt{xy}\right){dx}{dy},\quad 0<c<1$$ and wanted to find the exponential term in its asymptotic as $n\rightarrow \infty$ using Laplace's method. First, I made the substitution $x = nt, y =nv$, so we get $$n^{n+2}\int_0^{\infty}\int_0^{\infty}e^{n(-t-v+\ln v)}\cosh(2c\sqrt{tv}\cdot n) {dt}{dv}$$ For large $n$ we can use that $\cosh\left(2c\sqrt{xy}\cdot n\right)\sim \frac{1}{2}\exp\left(2c\sqrt{xy}\cdot n\right)$ and the integral becomes $$\frac{1}{2}n^{n+2}\int_0^{\infty}\int_0^{\infty}e^{n(-t-v+\ln v+2c\sqrt{tv})} {dt}{dv}$$
Now, the maximum of the function in exponent is reached at $$t\rightarrow\frac{c^2}{1-c^2},v\rightarrow\frac{1}{1-c^2}$$ And so the exponential term in the asymptotic should be $$\left(\frac{1}{1-c^2}\right)^n e^{-n}$$ But this doesn't seem to match the numerical evaluations, especially for small values of $c$. What am I doing wrong?