By playing around, I noticed that $F_n$, the $n$th Fibonacci number, equals $$\frac{\cosh\left(n\operatorname{arcsinh}\left(\frac12\right)\right)}{\cosh\left(\operatorname{arcsinh}\left(\frac12\right)\right)}\text{ for odd $n$,}\quad\frac{\sinh\left(n\operatorname{arcsinh}\left(\frac12\right)\right)}{\cosh\left(\operatorname{arcsinh}\left(\frac12\right)\right)}\text{ for even $n$.}$$ This can be proved by showing that it is equivalent to Binet's formula.
I imagine this formula is almost certainly already known. Assuming so, does it have a name? What is it? (I'm turning to Math Stack Exchange because it's not easy to Google formulas.
For a quick proof sketch, using Binet's formula, one can show that $$\begin{align*}\cosh\left(n\operatorname{arcsinh}\left(\frac{1}{2}\right)\right)=\begin{cases}\frac{\sqrt5}2F_n,&\text{$n$ odd}\\\frac12L_n,&\text{$n$ even}\end{cases}\\ \sinh\left(n\operatorname{arcsinh}\left(\frac{1}{2}\right)\right)=\begin{cases}\frac12L_n,&\text{$n$ odd}\\\frac{\sqrt5}2L_n,&\text{$n$ even}\end{cases}\end{align*}$$ where $L_n:=F_{n-1}+F_{n+1}$ is the $n$th Lucas number. Since $\cosh\left(\operatorname{arcsinh}\left(\frac12\right)\right)=\frac{\sqrt5}2$, the above formula follows readily.
As a bonus, the Lucas numbers satisfy a similar formula as well. They equal $$2\sinh\left(n\operatorname{arcsinh}\left(\frac{1}{2}\right)\right)\text{ for odd $n$,}\qquad2\cosh\left(n\operatorname{arcsinh}\left(\frac{1}{2}\right)\right)\text{ for even $n$.}$$