In $\S2.5$ the book writes $\{A:\varphi(A)\}$ is translated:$\{x:x\ is\ a\ set\&\varphi(x)\}$.But with this translation it seems impossible to prove theorem 86:$B\in\mathscr{P}A\leftrightarrow B\subseteq A$.
I can't prove sufficiency. Here's my attempt:
- By hypothesis $B\subseteq A$.
- By power set axiom there is a set, say B*, $\forall x(x\ is\ a\ set\rightarrow(x\in B^*\leftrightarrow x\subseteq A))$.
- By definition of power set and translation of $\{A:\varphi(A)\}$,$\mathscr{P}A=\{x:x\ is\ a\ set\&x\subseteq A\}$
And according to definition by abstraction, if I want to get $\forall x (x\in \mathscr{P}A\leftrightarrow x\ is\ a\ set\&x\subseteq A)$ I have to prove$\exists B\forall x(x\in B\leftrightarrow x\ is\ a\ set\&x\subseteq A)$. The only way seems to be using the formula $\forall x(x\ is\ a\ set\rightarrow(x\in B^*\leftrightarrow x\subseteq A))$, but this doesn't entail $\exists B\forall x(x\in B\leftrightarrow x\ is\ a\ set\&x\subseteq A)$ and I'm stucked here.
I suspect $\{A:\varphi(A)\}$ should be translated as$\{x:x\ is\ a\ set\rightarrow\varphi(x)\}$, that way, the proof will be simple.