Why $x^2+2$ splits iff $p \equiv 1$ or $3 \bmod 8$.
It is easy to check $p \equiv 1 \bmod 8 \quad x^2+2$ splits. In fact, if $\mathbb{F}_p$ contains a 8 th root of 1. Then $\left(\xi-\xi^{-1}\right)^2+2=0$, so $x^2+2$ splits in $\mathbb{F}_p$. so $8 \mid p-1, p \equiv 1 \pmod 8$.
I am confused about another situation when $p \equiv 3 \bmod 8$.