let $a,b,c,d$ be positive integers satisfying $a^2+b^2=c^2+d^2$, $a\ge b$, $c\ge d$, $a>c$
prove that:
$a^2+b^2$ is divisible by $\dfrac{ac+bd}{\gcd(ac+bd,ab+cd)}$
I know very little about the equation $a^2+b^2=c^2+d^2=n$, like, does it have any special properties, or a formula for $n$?.
Some things i have
$ab+cd=\dfrac{(c+d+a-b)(c+d+b-a)}{2}=\dfrac{(a+b+c-d)(a+b+d-c)}{2}$
and $(a^2+b^2)^2=(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-cb)^2$
Please give your comments on the problem, thanks a lot.