In this 2010 post, I pointed out that given the fundamental unit $U_{29}= \frac{5+\sqrt{29}}2$, and fundamental solutions to Pell equations $x^2-29y^2 = \pm1$,
$$\big(U_{29}\big)^3=70+13\sqrt{29},\quad \text{thus}\;\;\color{blue}{70}^2-29\cdot\color{blue}{13}^2=-1$$
$$\big(U_{29}\big)^6=9801+1820\sqrt{29},\quad \text{thus}\;\;\color{blue}{9801}^2-29\cdot\color{blue}{1820}^2=1$$
and the relations,
$$2^6\left((U_{29})^6+(U_{29})^{-6}\right)^2 =\color{blue}{396^4}$$ $$e^{\pi\sqrt{\color{blue}{58}}} = 396^4-104.00000017\dots$$
then we find these six blue numbers all over Ramanujan's famous formula,
$$\frac1{\pi} = \frac{\sqrt2}{\color{blue}{9801}} \sum_{n=0}^\infty \frac{(4n)!}{n!^4} \frac{\color{blue}{58}\cdot\color{blue}{70\cdot13}\,n+2206}{\color{blue}{(396^4)}^n}$$
except one, namely $y = \color{blue}{1820}$. I've always been bothered by this.
Revisiting this problem, there may be a solution. We use three fundamental units,
$$U_2 = 1+\sqrt2\\ U_{29}= \frac{5+\sqrt{29}}2\\ U_{58}= 99+13\sqrt{58}$$
since the relevant discriminant is actually $d = -2\cdot29 = -58$ which has class number $h(d) = 2$. A complete elliptic integral of the first kind $K(k_r)$ is also needed. In Mathematica syntax, this is EllipticK[ModularLambda[Sqrt[-58]]]. Then we get,
$$\frac1{\pi}-\left(\frac{12^4\,\big(U_{29}\big)^3}{396\,U_{58}}\right) \left(\frac{2K(k_{58})}{\pi\,\big(U_2)^3}\right)^2 = \frac1{\color{blue}{9801}\sqrt2} \sum_{n=0}^\infty \frac{(4n)!}{n!^4} \frac{2\cdot\color{blue}{58}\cdot\color{blue}{70\cdot13}\,n+\color{blue}{1820}}{\color{blue}{(396^4)}^n}$$
and all six blue numbers finally appear!
Question: But how do we prove this though?
P.S. In the Mathworld list above for $K(k_r)$, they give closed-forms in terms of gamma functions $\Gamma(n)$, but don't have $r=58$. Since $4\times58 = 232$, then,
$$\left(\frac{58\,\big(U_{29}\big)^3}{\pi\,U_{58}}\right)^2 \left(\frac{4K(k_{58})}{\big(U_2)^3}\right)^4= \prod_{m=1}^{232}\Gamma\left(\frac{m}{232}\right)^{\big(\frac{-232}{\; m}\big)}$$
where the exponent $\big(\frac{-232}{\; m}\big)$ is the Kronecker symbol.