9

Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that for all $x,y\in\mathbb{R}$,$$f(f(x))+f(f(y))+2f(xy)=f(x^2+y^2).$$

Current progress: We want to prove that the only solutions are $f\equiv0$ and $f(x)=x^2$. Let $P(x,y)$ denote the proposition above.

From $P(0,0)$: $$2f(f(0))+f(0)=0\tag{1}.$$

From $P(x,0)$: $$f(f(x))+f(f(0))+2f(0)=f(f(x))+\frac{3f(0)}{2}=f(x^2)\\\implies f(f(x))=f(x^2)-\frac{3f(0)}{2}\tag{2}$$ by substituting $(1)$.

Then, $P(x,y)$ now implies: $$f(x^2)+f(y^2)+2f(xy)-3f(0)=f(x^2+y^2)\\\implies \left[f(x^2)-f(0)\right]+\left[f(y^2)-f(0)\right]+2\left[f(xy)-f(0)\right]=\left[f(x^2+y^2)-f(0)\right]\tag{3}$$ by substituting $(2)$. Let $g(x)=f(x)-f(0)$. Then, $(3)$ becomes: $$g(x^2)+g(y^2)+2g(xy)=g(x^2+y^2).$$ Let this new proposition be $Q(x,y)$.

From $Q(-x,y)$: $$g(x^2)+g(y^2)+2g(-xy)=g(x^2+y^2).$$ Comparing this to $Q(x,y)$, we conclude that $g$ is even.

Then, for all $x,y,z\geq0$,

$$\begin{align} &g(x)+g(y)+g(z)+2g(\sqrt{xy+xz})+2g(\sqrt{yz}) \\ =&g(x)+g(y+z)+2g(\sqrt{xy+xz}) \\ =&g(x+y+z) \\ =&g(y)+g(x+z)+2g(\sqrt{xy+yz}) \\ =&g(x)+g(y)+g(z)+2g(\sqrt{xz})+2g(\sqrt{xy+yz}) \end{align}$$ $$ \implies \forall x,y,z\geq0, g(\sqrt{x+y})+g(\sqrt{z})=g(\sqrt{x})+g(\sqrt{y+z}) \\ \implies \forall x,y\geq0, g(\sqrt{x})+g(\sqrt{y}) = g(\sqrt{x+y}) $$

For $x\geq0$, let $h(x)=g(\sqrt{x})$. Then, $h$ is additive. Substituting back, we find that $\forall x, f(x)=h(x^2)+c$. $c$ can be easily determined to be $0$, so $f(x)=h(x^2)$. Substituting back, our only equation is that $h(h(x^2)^2)=h(x^4)$. I’m curious to know that if it is possible to uniquely determine $h$ based only on this condition (and the fact that $h$ is additive).

jatropha
  • 101
  • 7
  • 5
    What is the context of this exercise? – Martin Brandenburg Sep 01 '24 at 12:14
  • 3
    I do not understand how you imply the second to last line of the math formulas from the previous expansion of $g( x +y+z)$. – Antonio Sep 01 '24 at 16:07
  • For finding $h$, did you look at Cauchy's functional equation? I believe if you can show $h$ is continuous then $h$ must be of the form $ax$ for some constant $a$. – Sahaj Sep 01 '24 at 16:17
  • 1
    If we don't require the function to be continuous, functional equations sometimes have "bizarre" solutions from applying the axiom of choice to categories of numbers which relate to each other per the equation, but don't "force" the values of other inputs. – aschepler Sep 01 '24 at 18:09
  • I suppose one can show that $h(x) \geq 0$ and then apply this to show that $h(x) = ax\forall x$.. – Sahaj Sep 01 '24 at 18:14
  • @Sahaj I’ve tried that method before but it yielded no results. – jatropha Sep 02 '24 at 09:16
  • @jatrophalouvre it could be the case that $f$ has some wild solutions as pointed out in the other comments. is there any reason why you believe $f$ has only two solutions viz $x\mapsto 0 \forall x$ and $x\mapsto x^2\forall x$? – Sahaj Sep 02 '24 at 13:59
  • How did you get from $g(\sqrt{xy+xz})+g(\sqrt{yz})=g(\sqrt{xz})+g(\sqrt{xy+yz})$ to $g(\sqrt{x+y})+g(\sqrt{z})=g(\sqrt{x})+g(\sqrt{y+z})$ ? – Sil Sep 06 '24 at 03:19
  • 1
    @Sil, Indeed that step seems problematic to me as well. The second equality can be obtained from the first one by substituting $$(x,y,z)\mapsto(\sqrt{xy/z},\sqrt{yz/x},\sqrt{zx/y}), $$ but this requires the assumption that $x,y,z>0$ and not just $x,y,z\geq 0$. This prevents plugging $z=0$ as what OP claimed. – Sangchul Lee Sep 06 '24 at 03:40
  • 1
    Oh I see, from there we have $g(\sqrt{x+y})-g(\sqrt{x})=g(\sqrt{y+z})-g(\sqrt{z})$, but lhs does not depend on $z$, rhs does not depend on $x$, which means that both sides depend only on $y$. So let $g(\sqrt{x+y})-g(\sqrt{x})=h(\sqrt y)$, i.e. $g(\sqrt{x+y})=g(\sqrt{x})+h(\sqrt y)$, swapping $x,y$ and comparing we get $g(\sqrt{x})+h(\sqrt y)=g(\sqrt{y})+h(\sqrt x)$, so $g(\sqrt{x})-h(\sqrt{x})=c$ is a constant, hence $g(\sqrt{x+y})=g(\sqrt{x})+g(\sqrt{y})-c$. Then shift and it's Cauchy FE (for $x,y>0$). I think... – Sil Sep 06 '24 at 03:56
  • @Sil, That's an awesome observation! – Sangchul Lee Sep 06 '24 at 04:51
  • @stochasticboy321 Please read the post carefully. $h$ does not only satisfy Cauchy's equation, but also $h(h(x^2)^2)=h(x^4)$. – Martin Brandenburg Sep 06 '24 at 05:50
  • @jatropha This is a fun problem! May I ask where you found the problem? Or did you make it up yourself? – Antonio Nov 13 '24 at 11:15

1 Answers1

7

Here is a self-contained, full solution.

Step 1. Let $\mathsf{FE}_1(x, y)$ denote the original functional equation

$$ \color{blue}{\mathsf{FE}_1(x,y)} : \quad f(f(x)) + f(f(y)) + 2f(xy) = f(x^2 + y^2). \tag{1} $$

Now we make a series of observations:

  • $\mathsf{FE}_1(0, 0)$ implies that $f(\alpha) = -\frac{1}{2}\alpha$, where $\alpha = f(0)$.

  • $\mathsf{FE}_1(x, 0)$ reduces to $$ f(f(x)) = f(x^2) - \tfrac{3}{2}\alpha. \tag{2} $$

  • Let $g(x) = f(x) - \alpha$. Plugging $\text{(2)}$ to $\mathsf{FE}_1(x, y)$, we obtain $$ \color{blue}{\mathsf{FE}_2(x, y)} : \quad g(x^2) + g(y^2) + 2g(xy) = g(x^2 + y^2) \tag{3} $$ for all $x, y \in \mathbb{R}$.

  • $\mathsf{FE}_2(x, 1)$ reduces to $g(x) = \frac{1}{2}[g(x^2 + 1) - g(x^2) - g(1)]$. In particular, $g(x)$ is an even function.


Step 2. Now, for $x, y, z \in \mathbb{R} $ we define

\begin{align*} R(x, y, z) = g(x^2 + y^2 + z^2) - \sum_{\text{cyc}} g(x^2) - 2\sum_{\text{cyc}} g(xy). \end{align*}

Note that $R(x, y, z)$ is a symmetric function of $x, y, z$. Also, expanding $R(x, y, z)$ by using $\mathsf{FE}_2$ twice, we get

\begin{align*} R(x, y, z) &= g(x^2+y^2) + 2g(\sqrt{x^2z^2+y^2z^2}) - g(x^2) - g(y^2) - 2\sum_{\text{cyc}} g(xy) \\ &= 2[g(\sqrt{x^2z^2+y^2z^2}) - g(xz) - g(yz)]. \end{align*}

Hence, simplifying $R(x, y, z) = R(x, z, y)$ yields

$$ g(\sqrt{y^2z^2 + x^2z^2}) - g(xz) = g(\sqrt{y^2z^2 + x^2y^2}) - g(xy) $$

Now let $a, b, c \in \mathbb{R}_{>0}$. Then plugging $(x, y, z) = (\sqrt[4]{bc/a}, \sqrt[4]{ca/b}, \sqrt[4]{ab/c})$ to the above equality yields the following functional identity

$$ \color{blue}{\mathsf{FE}_3(a, b, c)} : \quad g(\sqrt{a+b}) - g(\sqrt{b}) = g(\sqrt{a+c}) - g(\sqrt{c}) \tag{4} $$

for all $a, b, c > 0$. In fact, $\mathsf{FE}_3(a, b, c)$ continues to hold even when $a = 0$, since both sides of $\mathsf{FE}_3(0, b, c)$ are identically zero.


Step 3. We employ @Sil's argument as described in the comment. Indeed, let's define

$$ h_0(x) = g(\sqrt{x+a})-g(\sqrt{a}),\qquad x\geq 0$$

where $a > 0$ is an arbitrary constant. Although the definition of $h_0$ involves the unspecified constant $a$, $\mathsf{FE}_3$ tells that $h_0$ is well-defined and is independent of the choice of $a$. Moreover, for any $x,y \geq 0$ and for any $a > 0$,

\begin{align*} h_0(x+y) &= g(\sqrt{x+y+a}) - g(\sqrt{a}) \\ &= g(\sqrt{x+y+a}) - g(\sqrt{y+a}) + g(\sqrt{y+a}) - g(\sqrt{a}) \\ &= h_0(x) + h_0(y). \end{align*}

Now, define $h(x)$ by

$$ h(x) = \begin{cases} h_0(x), & x \geq 0, \\ -h_0(-x), & x \leq 0. \end{cases} $$

Since $h_0(0) = 0$, the function $h$ is well-defined and satisfies $h(-x) = -h(x)$. Moreover, an easy but tedious computation shows that $h$ is also additive. (You may check the following four cases separately: (1) $x, y \geq 0$, (2) $x, y \leq 0$, (3) $0 \leq -x \leq y$, (4) $0 \leq y \leq -x$.)

Then for any $y \geq x > 0$,

\begin{align*} g(y) - g(x) &= g(\sqrt{y^2 - x^2 + x^2}) - g(\sqrt{x^2}) \\ &= h(y^2 - x^2) \\ &= h(y^2) - h(x^2). \end{align*}

By using the fact that $h$ is an odd function, it is easy to check that this relation extends to any $x, y > 0$. In particular,

$$ g(x) = h(x^2) + \beta $$

with $\beta = g(1) - h(1)$. Plugging this into $\mathsf{FE}_2$, we can determine that $\beta = 0$. From this and noting that $g(0) = 0 = h(0)$, we conclude:

$$ g(x) = h(x^2), \quad \forall x \in \mathbb{R}. \tag{5} $$


Step 4. Plugging $\text{(4)}$ into the definition of $g$, we know that

$$ f(x) = h(x^2) + \alpha \tag{6} $$

for an additive function $h$. We claim:

Claim. $h(xy) = h(h(x)h(y))$ for all $x, y \in \mathbb{R}$.

Proof. Let $x \geq 0$. Then by $\text{(2)}$, we have

$$ f(x) - f(f(\sqrt{x})) = \tfrac{3}{2}\alpha = f(0) - f(f(0)). $$

Plugging $\text{(6)}$ into the above identity and simplifying a bit, we obtain $h(\alpha^2) = -\frac{3}{2}\alpha$ and

$$ \color{blue}{\mathsf{FE}_4(x)}: \quad h(h(x)^2 - x^2) + 2h(h(x)\alpha) = 0. \tag{7} $$

To make use of this identity, we invoke the polarization trick. Indeed, let $x, y \geq 0$ and consider $\mathsf{FE}_4(x+y)$, $\mathsf{FE}_4(x)$, and $\mathsf{FE}_4(y)$:

\begin{align*} \mathsf{FE}_4(x+y) : \quad 0 &= h( (h(x) + h(y))^2 - (x + y)^2) + 2h((h(x) + h(y))\alpha) \\ \mathsf{FE}_4(x) : \quad 0 &= h(h(x)^2 - x^2) + 2h(h(x)\alpha) \\ \mathsf{FE}_4(y) : \quad 0 &= h(h(y)^2 - y^2) + 2h(h(y)\alpha) \end{align*}

Subtracting the below two identities from the first one, it follows that

$$ 2h(h(x)h(y) - xy) = 0. $$

Using the additivity of $h$, it is easy to check that this identity continues to hold for any $x, y \in \mathbb{R}$. $\square$


Step 5. Returning to the original problem, we consider two possibilities:

Case 1. Assume first that $h(x) \neq 0$ for all $x \neq 0$. Equivalently, let's assume that $h(x) = 0$ implies $x = 0$. Then the above claim implies that

$$ h(x)h(y) = xy $$

for all $x, y \in \mathbb{R}$. Plugging $x = y = 1$ into this identity, we get $h(1) = \pm 1$. This then implies that both

$$ f(x) = x^2 \qquad \text{and} \qquad f(x) = -x^2 $$

are solutions of the original functional equation.

Case 2. If $h(a) = 0$ for some $a \neq 0$, then for any $x \in \mathbb{R}$,

$$ h(x) = h((x/a)a) = h(h(x/a)h(a)) = 0. $$

Therefore, $f$ is identically zero in this case.


Conclusion. The only solutions of the functional equation $\mathsf{FE}_1$ are

$$ f(x) = x^2, \qquad f(x) = -x^2, \qquad f(x) = 0. $$

Sangchul Lee
  • 181,930