2

Consider the equality: $$\sum _{h=0}^{\infty } \left(\sum _{k=1}^n x^{h n+k} f(\gcd (n,k))\right)=\frac{10 x^{10}+9 x^9+8 x^8+7 x^7+6 x^6+5 x^5+4 x^4+3 x^3+2 x^2+x}{x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1} \label{1}\tag{1}$$

where $$n=11$$

and $$f(n) = \sum_{d \mid n} \mu(d)d$$

Integrating the right hand side in Mathematica 14:

$$\int \frac{10 x^{10}+9 x^9+8 x^8+7 x^7+6 x^6+5 x^5+4 x^4+3 x^3+2 x^2+x}{x^{10}+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1} \, dx$$

gives the root sum:

10 x - RootSum[
  1 + #1 + #1^2 + #1^3 + #1^4 + #1^5 + #1^6 + #1^7 + #1^8 + #1^9 + \
#1^10 &, (
   10 Log[x - #1] + 9 Log[x - #1] #1 + 8 Log[x - #1] #1^2 + 
    7 Log[x - #1] #1^3 + 6 Log[x - #1] #1^4 + 5 Log[x - #1] #1^5 + 
    4 Log[x - #1] #1^6 + 3 Log[x - #1] #1^7 + 2 Log[x - #1] #1^8 + 
    Log[x - #1] #1^9)/(
   1 + 2 #1 + 3 #1^2 + 4 #1^3 + 5 #1^4 + 6 #1^5 + 7 #1^6 + 8 #1^7 + 
    9 #1^8 + 10 #1^9) &]

Integrating the left hand side instead:

$$\int x^{h n+k} \, dx=\frac{x^{h n+k+1}}{h n+k+1}$$

gives:

$$\sum _{h=0}^{\infty } \left(\sum _{k=1}^n \frac{x^{h n+k+1} f(\gcd (n,k))}{h n+k+1}\right) = \frac{-277200 x \, _2F_1\left(\frac{1}{11},1;\frac{12}{11};x^{11}\right)+2772 x^{10} \, _2F_1\left(\frac{10}{11},1;\frac{21}{11};x^{11}\right)+3080 x^9 \, _2F_1\left(\frac{9}{11},1;\frac{20}{11};x^{11}\right)+3465 x^8 \, _2F_1\left(\frac{8}{11},1;\frac{19}{11};x^{11}\right)+3960 x^7 \, _2F_1\left(\frac{7}{11},1;\frac{18}{11};x^{11}\right)+4620 x^6 \, _2F_1\left(\frac{6}{11},1;\frac{17}{11};x^{11}\right)+5544 x^5 \, _2F_1\left(\frac{5}{11},1;\frac{16}{11};x^{11}\right)+6930 x^4 \, _2F_1\left(\frac{4}{11},1;\frac{15}{11};x^{11}\right)+9240 x^3 \, _2F_1\left(\frac{3}{11},1;\frac{14}{11};x^{11}\right)+13860 x^2 \, _2F_1\left(\frac{2}{11},1;\frac{13}{11};x^{11}\right)-2520 \log \left(1-x^{11}\right)+277200 x}{27720} \label{2}\tag{2}$$

involving the hypergeometric function, which when $n$ is a prime number or when the left hand side of $\eqref{1}$ is of the form in the post about logarithms, appears to have the form:

$$\sum _{h=0}^{\infty } \left(\sum _{k=1}^n \frac{x^{h n+k+1} f(\gcd (n,k))}{h n+k+1}\right) = \sum _{k=2}^n \frac{x^k \, _2F_1\left(\frac{k}{n},1;\frac{k+n}{n};x^n\right)}{k}+(n-1) x \left(1-\, _2F_1\left(\frac{1}{n},1;\frac{n+1}{n};x^n\right)\right) \label{3}\tag{3}$$

The integral of the left hand side of $\eqref{1}$ which results in $\eqref{2}$ can be verified to be correct numerically:

Mathematica 14:

Clear[f, n, k, x, h, A, B]
nn = 11;
f[n_] := DivisorSum[n, MoebiusMu[#]  # &]
n = nn;
S = Sum[Sum[f[GCD[n, k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}]
integral = 
  Sum[Sum[f[GCD[n, k]]*x^(1 + k + h n)/(1 + k + h n), {k, 1, n}], {h, 
    0, Infinity}];
x1 = 2;
x = x1;
a = integral;

x2 = 3; x = x2; b = integral;

N[b - a, 50] NIntegrate[S, {x, x1, x2}, WorkingPrecision -> 50]

Output:

9.3079086593952989311454361373316908074201158341320 + 0.*10^-50 I

9.3079086593952989311454361373316908074201158341320

Question

Is this new? Or has it been used before? The goal is to express the reciprocal of the Riemann zeta function $$\frac{1}{\zeta(s)}$$ as a ratio of polynomials.

Maybe Möbius inversion of the integrals is all that is needed to make it general.

Any feedback or comments are welcome.


About the edit about the post about logarithms above:

Mathematica 14:

Clear[f, n, k, x, h, A, B]
nn = 11;
f[n_] := DivisorSum[n, MoebiusMu[#]  # &]
n = nn;
S = Sum[Sum[If[k == n, 1 - n, 1]*x^(n*h + k), {k, 1, n}], {h, 0, 
   Infinity}]
Integrate[S, x]
integral = 
  Sum[Sum[If[k == n, 1 - n, 1]*x^(1 + k + h n)/(1 + k + h n), {k, 1, 
     n}], {h, 0, Infinity}];
FullSimplify[%]
Expand[(n - 1)*x*(1 - Hypergeometric2F1[1/n, 1, (n + 1)/n, x^n]) + 
  Sum[1/k*x^k*Hypergeometric2F1[k/n, 1, (n + k)/n, x^n], {k, 2, n}]]
FullSimplify[%% - %]

where FullSimplify[%% - %] returns 0 which means that the hypergeometric function expression of the integral in $\eqref{3}$ should be correct.

This is the Mathematica 14 code which appears to be correct when $n$ is the product of exactly $2$ prime numbers:

Clear[f, n, k, x, h, A, B]
nn = 14;
f[n_] := DivisorSum[n, MoebiusMu[#]   # &]
n = nn;
Table[f[GCD[n, n - k + 1]], {k, 1, n}]
S = Sum[Sum[f[GCD[n, k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}]
integral = 
  Sum[Sum[f[GCD[n, k]]*x^(1 + k + h  n)/(1 + k + h  n), {k, 1, 
     n}], {h, 0, Infinity}];
Expand[FullSimplify[%]]
Expand[(-f[GCD[n, n - 1 + 1]])*
   x*(1 - Hypergeometric2F1[1/n, 1, (n + 1)/n, x^n]) + 
  Sum[f[GCD[n, n - k + 1]]/k*x^k*
    Hypergeometric2F1[k/n, 1, (n + k)/n, x^n], {k, 2, n}]]
%% - %

The general formula for the integral for any $n$ appears to be given by this Mathematica 14 program:

Clear[f, n, k, x, h, A, B]
nn = 30;
f[n_] := DivisorSum[n, MoebiusMu[#]    # &]
n = nn;
Table[f[GCD[n, n - k + 1]], {k, 1, n}]
S = Sum[Sum[f[GCD[n, k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}]
integral = 
 Expand[Sum[
   Sum[f[GCD[n, k]]*x^(1 + k + h   n)/(1 + k + h   n), {k, 1, n}], {h,
     0, Infinity}]]
-f[GCD[n, n]]  x + 
 f[GCD[n, n]]*x  Hypergeometric2F1[1/n, 1, (n + 1)/n, x^n] + 
 Sum[f[GCD[n, k - 1]]/k*x^k*
   Hypergeometric2F1[k/n, 1, (n + k)/n, x^n], {k, 2, n}]
%% - %

which returns 0 which means they should be equivalent. I found the general formula for the integral in a much simpler way by writing StringJoin["q", ToString[k]] and inspecting the result.

Apparently one gets long denominators for any sequence f that sums to zero:

Clear[f, n, k, x, h, A, B]
f = {3, -2, -7, 2, 3, -2, 1, -2, 2, 2}
Total[f]
n = Length[f];
S = Sum[Sum[f[[k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}]
integral = 
 Expand[Sum[
   Sum[f[[k]]*x^(1 + k + h    n)/(1 + k + h    n), {k, 1, n}], {h, 0, 
    Infinity}]]
-f[[n]]   x + f[[n]]*x   Hypergeometric2F1[1/n, 1, (n + 1)/n, x^n] + 
 Sum[f[[k - 1]]/k*x^k*Hypergeometric2F1[k/n, 1, (n + k)/n, x^n], {k, 
   2, n}]
%% - %

f need not sum to zero but those sequences give uninteresting denominators.

Mats Granvik
  • 7,614
  • Thanks! I forgot to say that $n=11$. Corrected that now. – Mats Granvik Aug 26 '24 at 08:35
  • I am unsure of the last edit I made. I have a tendency to mess up the text when I edit the text afterwards. – Mats Granvik Aug 26 '24 at 14:05
  • 1
    I assume when $n=12$, the numerator gets and extra terms of $11x^{11}$ and denominator gets an extra term of $x^{11}$. That has a simpler way of solving (I may be able to solve it). Even order of polynomials don't factorize well (and I don't know how to solve your integral for n=11). Is that your main source of trouble? – Srini Aug 27 '24 at 22:00
  • Yes that is right. What I thought was interesting at first was that the polynomial in the denominator is long/has a high degree. But more interesting would be denominators that are irregular 0,1-polynomials, like: denominator=$x^{17}+x^{103}+x^{152}+x^{377}$ and similar. I have not found expansions for such rational polynomials yet. – Mats Granvik Aug 28 '24 at 13:25
  • 1
    If you restrict $x$ to fields, Wolfram gives splitting field factorization for your original polynomial. Likely it chooses different fields for different polynomials making it useless for your application. Honestly I don't know that topic to comment intelligently. JFYI if you haven't already thought about it. – Srini Aug 28 '24 at 14:33

1 Answers1

1

One can't get the the Riemann zeta function in the denominator this way because of the Euler product.

The closest one can get is feeding in logarithms of prime numbers into the vector d which yields the reciprocal the Riemann zeta function but in the denominator, which is not what I wanted.

Here is the Mathematica 14 program to demonstrate it:

(*start*)
Clear[f, n, k, x, h, A, B]
f = {1, 1, 1, 1}
d = {Log[2], Log[3], Log[5], Log[7]}/4
n = Length[f]
S = Sum[Sum[f[[k]]*Exp[x*d[[k]]]^(n*h + k), {k, 1, n}], {h, 0, 
   Infinity}]
integral = 
 Sum[Sum[f[[k]]*(E^(x*d[[k]]))^(k + h   n)/(d[[k]]*(k + h    n)), {k, 
    1, n}], {h, 0, Infinity}]
"The reciprocal of the Riemann zeta function as the Euler product:"
Denominator[S]
Expand[%]
x1 = 2;
x = x1;
a = integral;

x2 = 3; x = x2; b = integral;

N[b - a, 50] NIntegrate[S, {x, x1, x2}, WorkingPrecision -> 50] Expand[Denominator[S]] (end)

Where the Euler product in the denominator is:

$$(-1 + 2^x) (-1 + 3^x) (-1 + 5^x) (-1 + 7^x)$$

which expands into the Möbius function:

$$1 - 2^x - 3^x - 5^x + 6^x - 7^x + 10^x + 14^x + 15^x + 21^x - 30^x + 35^x - 42^x - 70^x - 105^x + 210^x$$

Mats Granvik
  • 7,614