I want to know how to prove that :
$\sin(\alpha)+\sin(\alpha+\beta)+\sin(\alpha+2\beta)+...+\sin(\alpha+(n-1)\beta)=\frac{\sin(\frac{n\alpha}{2})}{\frac{n\alpha}{2}}[sin(\alpha+\frac{n-1}{2}\beta)]$
I tried by expanding $\sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+\cos(\alpha)\sin(\beta)$
$\sin(\alpha+2\beta)=\sin(\alpha) \cos(2\beta)+\cos(\alpha)\sin(2\beta)$
And so on.
Finally I got the summation to be
$\sin(\alpha)[1+\cos\beta+\cos2\beta+\cos3\beta+...\cos(n-1)\beta]+\cos(\alpha)[\sin\beta+\sin2\beta+\sin3\beta+...+\sin(n-1)\beta]$
But I can't understand how to proceed further
Please help me out.
$$\begin{align} LHS&= \sin 2\pi + \sin \left(2\pi+\frac\pi2\right) = 1\ RHS &= \frac{\sin{\frac{2\cdot2\pi}2}}{\frac{2\cdot2\pi}2}\cdot\sin(\ldots) = 0 \end{align}$$
– peterwhy Aug 12 '24 at 21:00