If $X$ is uniform on $[-1,1]$ then $Xy \sim U(-y,y)$. Hence if $y \geq 0$ and $|z| \leq |y|$,
$$P(Xy \leq z) = \frac{1}{2y}\int_{-y}^zdx = (1+z/y)/2, $$
Overall for $y \geq 0$,
$$
P(Xy \leq z) = \begin{cases}
(1+z/y)/2 & y \geq |z|\\
0 & z \leq -y \\
1 & z \geq y
\end{cases}
$$
A similar calculation shows that for $y < 0$
$$
P(Xy \leq z) = \begin{cases}
(1-z/y)/2 & |y| \geq |z|\\
0 & z \leq y \\
1 & z \geq -y
\end{cases}
$$
Integrating this against the distribution of $Y$ for $z >0$,
\begin{align}
\int_{-1}^0 P(Xy \leq z | Y=y)dy + \int_{0}^1 P(Xy \leq z | Y=y)dy &= \frac{1}{4}\int_z^1(1+z/y) dy + \frac{1}{2}\int_0^zdy \\
&+ \frac{1}{4}\int_{-1}^{-z} (1-z/y)dy + \frac{1}{2}\int_{-z}^0dy \\
&= 1/2 + z/2 -(z\log |z|)/2,
\end{align}
You can carry out the integral for $z < 0$ to find that in fact
$$P(Z \leq z) = 1/2 + z/2 - (z\log |z|)/2,$$
holds for all $z \in [-1,1]$. This is not differentiable at $z = 0$, but you can differentiate it elsewhere to find,
$$f(z) = \frac{1}{2}\begin{cases} - \log z & 0<z\leq 1\\
-\log (-z) & -1 \leq z <0
\end{cases} $$