OP’s approach is correct. Let’s start with the last step.
Let $k=1-t$, then
$$
I = \underbrace{ \int_0^1 \frac{\ln (1+k)}{k} d k}_{J} - \underbrace{\int_0^1 \frac{\ln (1-k)}{k} d k}_{K} $$
For the integral $J$, we integrate the series for $|k|<1,$
$$
\frac{1}{1+k}=\sum_{n=0}^{\infty}(-1)^n k^n
\Rightarrow \quad \ln (1+k)= \sum_{n=1}^{\infty} \frac{(-1)^{n-1} k^n}{n}
$$
$$
\begin{aligned}
J & =\int_0^1 \sum_{n=1}^{\infty} \frac{(-1)^{n-1} k^n}{n k} d k \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \int_0^1 k^{n-1} d k \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}\\&=\sum_{n=1}^{\infty} \frac{1}{n^2}-2 \sum_{n=1}^{\infty} \frac{1}{(2 n)^2} \\
& =\left(1-\frac{1}{2}\right) \zeta(2) \\
& =\frac{\pi^2}{12}
\end{aligned}
$$
For the integral $K$, we integrate the series for $|k|<1,$
$$
\frac{1}{1-k}=\sum_{n=0}^{\infty} k^n
\Rightarrow \ln (1-k)=-\sum_{n=1}^{\infty} \frac{k^n}{n}
$$
$$
\begin{aligned}
K= & -\int_0^1 \sum_{n=1}^{\infty} \frac{k^n}{n k} d k \\
& =-\sum_{n=1}^{\infty} \frac{1}{n} \int_0^1 k^{n-1} d k \\
& =-\sum_{n=1}^{\infty} \frac{1}{n^2} \\
& =-\frac{\pi^2}{6}
\end{aligned}
$$
$$\boxed{\int_0^{\infty} \frac{\ln \left(2 e^x-1\right)}{e^x-1} d x =\frac{\pi^2}{12}-\left(-\frac{\pi^2}{6}\right)=\frac{\pi^2}{4}}$$
Wish it helps!