I posted this question here about finding the probability function for the number of flips needed to get 5 consecutive heads :(Probability Generating Functions for Coin Flip Problems?).
A user on math stackexchange posted the following answer involving Probability Generator Functions:
$$G_0(z) = pz G_1(z) + (1 - p) z G_0(z)$$ $$G_1(z) = pz G_2(z) + (1 -p) z G_0(z)$$ $$G_2(z) = pz G_3(z) + (1 - p) z G_0(z)$$ $$G_3(z) = pz G_4(z) +(1 - p) z G_0(z)$$ $$G_4(z) = pz + (1 - p) z G_0(z).$$
$$\begin{bmatrix} G_0(z) \\ G_1(z) \\ G_2(z) \\ G_3(z) \\ G_4(z) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ zp \end{bmatrix} + \begin{bmatrix} z(1 - p) & zp & 0 & 0 & 0 \\ z(1 - p) & 0 & zp & 0 & 0 \\ z(1 - p) & 0 & 0 & zp & 0 \\ z(1 - p) & 0 & 0 & 0 & zp \\ z(1 - p) & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} G_0(z) \\ G_1(z) \\ G_2(z) \\ G_3(z) \\ G_4(z) \end{bmatrix}$$
$$\left( I- z P \right) G(z) = zv$$
$$P = \begin{bmatrix} 1 - p & p & 0 & 0 & 0 \\ 1 - p & 0 & p & 0 & 0 \\ 1 - p & 0 & 0 & p & 0 \\ 1 - p & 0 & 0 & 0 & p \\ 1 - p & 0 & 0 & 0 & 0 \end{bmatrix}, v = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ p \end{bmatrix}$$
$$\boxed{ G(z) = (I - zP)^{-1} zv = \left( \sum_{k \ge 0} z^{k+1} P^k \right) v }.$$
In the answer, it was suggested to use Cramer's Rule to compute the inverse to find the probability function.
Here is my attempt:
$$A\mathbf{x} = \mathbf{b}$$ $$x_i = \frac{\det(A_i)}{\det(A)}$$ $$A_i = [a_1 \; a_2 \; \cdots \; b \; \cdots \; a_n]$$
$$\det(I - zP)$$: $$I - zP = \begin{bmatrix} 1-z(1-p) & -zp & 0 & 0 & 0 \\ -z(1-p) & 1 & -zp & 0 & 0 \\ -z(1-p) & 0 & 1 & -zp & 0 \\ -z(1-p) & 0 & 0 & 1 & -zp \\ -z(1-p) & 0 & 0 & 0 & 1 \end{bmatrix}$$
But I am feeling lost and don't know how to continue.
Can someone please show me how to do this?
Thanks