As a practice problem, I am trying to prove the relationship between the Normal Distribution and the Binomial Distribution. I have seen several proofs of this before (e.g. Justifying the Normal Approx to the Binomial Distribution through MGFs), but I wanted to try and do this myself. Specifically, I wanted to try and do this primarily using Moment Generating Functions.
Here are my steps and where I got stuck:
Let $X$ be a binomially distributed random variable with parameters $n$ and $p$.
For a binomial distribution: $$E(X) = np$$ $$Var(X) = np(1-p)$$
Define a standardized version of $X$: $$Z = \frac{X - np}{\sqrt{np(1-p)}}$$ Goal: Show that as $n$ approaches infinity, the distribution of $Z$ approaches $N(0,1)$.
I wanted to try and do this using Moment Generating Functions (MGF). The MGF of $Z$ is: $$M_Z(t) = E[e^{tZ}]$$
Substituting the definition of $Z$: $$M_Z(t) = E\left[\exp\left(\frac{t(X - np)}{\sqrt{np(1-p)}}\right)\right]$$
The MGF of the binomial distribution $X$ is (Finding the Moment Generating function of a Binomial Distribution): $$M_X(t) = (pe^t + 1-p)^n$$
Now we do the following manipulations: $$M_Z(t) = E\left[\exp\left(\frac{t(X - np)}{\sqrt{np(1-p)}}\right)\right]$$
$$M_Z(t) = E\left[\exp\left(\frac{tX}{\sqrt{np(1-p)}} - \frac{tnp}{\sqrt{np(1-p)}}\right)\right]$$
Since $e^{a+b} = e^a \cdot e^b$, we can write: $$M_Z(t) = E\left[\exp\left(\frac{tX}{\sqrt{np(1-p)}}\right) \cdot \exp\left(-\frac{tnp}{\sqrt{np(1-p)}}\right)\right]$$
The second term doesn't involve X, so we can take it out of the expectation: $$M_Z(t) = E\left[\exp\left(\frac{tX}{\sqrt{np(1-p)}}\right)\right] \cdot \exp\left(-\frac{tnp}{\sqrt{np(1-p)}}\right)$$
First term: $$E\left[\exp\left(\frac{tX}{\sqrt{np(1-p)}}\right)\right] = E\left[\exp\left(X \cdot \frac{t}{\sqrt{np(1-p)}}\right)\right]$$
This is the definition of the moment-generating function of X, evaluated at $$\frac{t}{\sqrt{np(1-p)}}$$: $$E\left[\exp\left(X \cdot \frac{t}{\sqrt{np(1-p)}}\right)\right] = M_X\left(\frac{t}{\sqrt{np(1-p)}}\right)$$
Putting it all together: $$M_Z(t) = M_X\left(\frac{t}{\sqrt{np(1-p)}}\right) \cdot \exp\left(-\frac{tnp}{\sqrt{np(1-p)}}\right)$$
Substituting the binomial MGF: $$M_Z(t) = \exp\left(-\frac{tnp}{\sqrt{np(1-p)}}\right) \cdot \left(p\exp\left(\frac{t}{\sqrt{np(1-p)}}\right) + (1-p)\right)^n$$
Use Taylor expansion of
$$exp\left(\frac{t}{\sqrt{np(1-p)}}\right)$$
$$e^x \approx 1 + x + \frac{x^2}{2} + o(x^2)$$: $$M_Z(t) \approx \exp\left(-\frac{tnp}{\sqrt{np(1-p)}}\right) \cdot \left(p\left(1 + \frac{t}{\sqrt{np(1-p)}} + \frac{t^2}{2np(1-p)}\right) + (1-p)\right)^n$$
- Simplify: $$M_Z(t) \approx \exp\left(-\frac{tnp}{\sqrt{np(1-p)}}\right) \cdot \left(1 + \frac{pt}{\sqrt{np(1-p)}} + \frac{pt^2}{2np(1-p)}\right)^n$$
11) I start to stumble at these steps.
Intuitively, I am guessing that since this term has an exponent to the power of $n$, this needs to be somehow removed. I have read that the Binomial Expansion can be used and keep terms up to $t^2$:
$$ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k $$ $$(1 + t\sqrt{\frac{p}{n(1-p)}} + \frac{t^2}{2n})^n $$ where $ a = 1 $ and $ b = t\sqrt{\frac{p}{n(1-p)}} + \frac{t^2}{2n} $
$$ (1 + b)^n = 1 + nb + \frac{n(n-1)}{2}b^2 + ... $$ $$ (1 + b)^n = 1 + n\left(t\sqrt{\frac{p}{n(1-p)}} + \frac{t^2}{2n}\right) + \frac{n(n-1)}{2}\left(t\sqrt{\frac{p}{n(1-p)}} + \frac{t^2}{2n}\right)^2 + ... $$
$$M_Z(t) \approx \exp\left(-\frac{tnp}{\sqrt{np(1-p)}}\right) \cdot \left(1 + t\sqrt{\frac{p}{n(1-p)}} + \frac{t^2}{2n}\right)^n$$
Expand the expression: $$M_Z(t) \approx \exp\left(-\frac{tnp}{\sqrt{np(1-p)}}\right) \cdot \left(1 + n\left(t\sqrt{\frac{p}{n(1-p)}} + \frac{t^2}{2n}\right) + \frac{n(n-1)}{2}\left(t\sqrt{\frac{p}{n(1-p)}} + \frac{t^2}{2n}\right)^2 + ...\right)$$
Simplify, keeping terms up to $t^2$: $$M_Z(t) \approx \exp\left(-\frac{tnp}{\sqrt{np(1-p)}}\right) \cdot \left(1 + t\sqrt{\frac{np}{1-p}} + \frac{t^2}{2} + \frac{t^2p}{2(1-p)} + ...\right)$$
14) This is where I really got stuck. Intuitively, I know that I need to show that the limit as n approaches infinity and show that this MGF is equal to the MGF of a Standard Normal: $$\lim_{n\to\infty} M_Z(t) ??? $$
I think I have made mistakes because the first term looks like Exponent of negative infinity which is 0 by definition.
Can someone please help me out here?