Notice that your series is equal to
$$\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3} +\dots=\sum^{\infty}_{n=0}\frac{n}{2^{n-1}}=\sum^{\infty}_{n=0}2^{1-n}n=2 \sum^{\infty}_{n=0}2^{-n}n$$
Let's check if this series converges
Take the limit as n approaches $\infty$ of $\left| \frac{\frac{n+1}{2^{(n+1)-1}}}{\frac{n}{2^{n-1}}}\right|$
$$\lim _{n \to \infty} \left| \frac{\frac{n+1}{2^{(n+1)-1}}}{\frac{n}{2^{n-1}}}\right|=\frac{1}{2}$$
Since the limit is less than 1 , the series converges absolutely .
Consider the sum $$\sum ^{\infty}_{n=0} Z_0^n=\frac{1}{1-Z_0}$$
Differentiate both sides with respect to $Z_0$
$$\sum ^{\infty}_{n=0}\frac{nZ^n_0}{Z_0}=\frac{1}{(Z_0-1)^2}$$
Multiply by $Z_0$
$$\sum ^{\infty}_{n=0}nZ^n_0=\frac{Z_0}{(Z_0-1)^2} $$
Setting $Z_0=\frac{1}{2}$ , we get that
$$\sum ^{\infty}_{n=0}2^{-n}n=2$$
therefore ,
$$2\left(\sum ^{\infty}_{n=0}2^{-n}n\right )=2(2)$$
Hence ,
$$\sum ^{\infty}_{n=0}2^{-n}n=4$$