Following the work done at
MSE 4118524
we can construct a recurrence (memoized) for these numbers.
Using combinatorial classes we have the following class $\mathcal{Q}$
of sets of undirected cycles of length at least two:
$$\def\textsc#1{\dosc#1\csod}
\def\dosc#1#2\csod{{\rm #1{\small #2}}}
\mathcal{Q} = \textsc{SET}(
\textsc{DHD}_{=2}(\mathcal{Z}) +
\textsc{DHD}_{=3}(\mathcal{Z}) +
\textsc{DHD}_{=4}(\mathcal{Z}) +
\textsc{DHD}_{=5}(\mathcal{Z}) + \cdots).$$
This gives the EGF (the dihedral group $D_n$ has order $2n$ except on
two nodes where it has order $2$)
$$Q(z) = \sum_{n\ge 0} Q_n \frac{z^n}{n!} =
\exp\left(
+ \frac{z^2}{2}
+ \frac{1}{2} \frac{z^3}{3}
+ \frac{1}{2} \frac{z^4}{4}
+ \frac{1}{2} \frac{z^5}{5}
+ \cdots\right)
\\ = \exp\left(- \frac{z}{2} + \frac{z^2}{4}
+ \frac{1}{2} \log\frac{1}{1-z}\right)
= \frac{\exp(-z/2+z^2/4)}{\sqrt{1-z}}.$$
Differentiating we find
$$Q'(z) =
- \frac{1}{2} (1-z) \frac{\exp(-z/2+z^2/4)}{\sqrt{1-z}}
+ \frac{1}{2} \frac{1}{1-z}
\frac{\exp(-z/2+z^2/4)}{\sqrt{1-z}}.$$
Extracting the coefficient on $[z^{n-1}]$ for $n\ge 2$
on both sides yields
$$\frac{Q_n}{(n-1)!}
= - \frac{1}{2} \frac{Q_{n-1}}{(n-1)!}
+ \frac{1}{2} \frac{Q_{n-2}}{(n-2)!}
+ \frac{1}{2} \sum_{m=0}^{n-1}
[z^m] \frac{\exp(-z/2+z^2/4)}{\sqrt{1-z}}
\\ = - \frac{1}{2} \frac{Q_{n-1}}{(n-1)!}
+ \frac{1}{2} \frac{Q_{n-2}}{(n-2)!}
+ \frac{1}{2} \sum_{m=0}^{n-1} \frac{Q_m}{m!}
= \frac{Q_{n-2}}{(n-2)!}
+ \frac{1}{2} \sum_{m=0}^{n-3} \frac{Q_m}{m!}.$$
This gives the recurrence
$$\bbox[5px,border:2px solid #00A000]{
Q_n = (n-1) Q_{n-2} +
\frac{(n-1)!}{2} \sum_{m=0}^{n-3} \frac{Q_m}{m!}.}$$
with base cases $Q_0=1, Q_1=0$ and $Q_2=1.$ To simplify this further we
introduce for $n\ge 3$
$$Q_{n-1} = (n-2) Q_{n-3}
+ \frac{(n-2)!}{2} \sum_{m=0}^{n-4} \frac{Q_m}{m!}$$
and get
$$Q_n = (n-1) Q_{n-1} + (n-1) Q_{n-2} - (n-1) (n-2) Q_{n-3 }
+ \frac{1}{2} (n-1) (n-2) Q_{n-3}$$
which yields
$$\bbox[5px,border:2px solid #00A000]{
Q_n = (n-1) Q_{n-1} + (n-1) Q_{n-2}
- \frac{1}{2} (n-1) (n-2) Q_{n-3}.}$$
for $n\ge 3$ with base cases $Q_0=1, Q_1=0$ and $Q_2=1.$
This will produce the sequence
$$1, 0, 1, 1, 6, 22, 130, 822, 6202, 52552, 499194, 5238370, \ldots$$
which points us to OEIS A002137
where we find the EGF and the recurrence, so the above is sound.
Addendum. If we insist on a closed form we get e.g.
$$\begin{align*}
& n! [z^n] \frac{\exp(-z/2(1-z/2))}{\sqrt{1-z}}
= n! [z^n] \sum_{k=0}^n \frac{1}{k!}
\frac{(-1)^{k}}{2^{k}} z^{k} (1-z/2)^{k}
\frac{1}{\sqrt{1-z}}
\\ & = n! \sum_{k=0}^n \frac{1}{k!}
\frac{(-1)^k}{2^k} [z^{n-k}] (1-z/2)^k \frac{1}{\sqrt{1-z}}
\\ & = n! \sum_{k=0}^n \frac{1}{k!}
\frac{(-1)^k}{2^k}
\sum_{j=0}^{n-k} {k\choose n-k-j} (-1)^{n-k-j} 2^{j+k-n}
\frac{1}{4^j} {2j\choose j}.
\end{align*}$$
We obtain
$$\bbox[5px,border:2px solid #00A000]{(-1)^n \frac{n!}{2^n}
\sum_{k=0}^n \frac{1}{k!}
\sum_{j=0}^{n-k}
{k\choose n-k-j} (-1)^j \frac{1}{2^j} {2j\choose j}.}$$
This is one of several possibilities.
Remark. Wilf in generatingfunctionology page 180 gives a proof
for the asymptotic
$$Q(n) \sim n! \exp(-1/4) {n-1/2\choose n} = \exp(-1/4)
(n-1/2)^{\underline{n}}.$$
This can be further simplified to
$$Q(n) \sim \frac{n! \exp(-1/4)}{\sqrt{\pi n}}.$$