In the thumbnail of this April-fools YouTube video there's the following expression:
$$\int \left(1+dx\right)^{\frac{x}{dx}}dx\tag{1}$$
Is this well-formulated?
Knowing a certain formula for $e$, one might be tempted to treat the two $dx$s appearing inside the integrand as $\left(\lim_{\varepsilon\to 0^{+}}\varepsilon\right)$ like so: $$\lim_{\varepsilon\to 0^{+}}\int \left(1+\varepsilon\right)^{\frac{x}{\varepsilon}}dx=\int \left(\lim_{\varepsilon\to 0^{+}}\left(1+\varepsilon\right)^{\frac{1}{\varepsilon}}\right)^{x}dx=\int e^{x}dx=e^{x}+C$$ but the step from $\int (1+dx)^{\frac{x}{dx}}dx$ to $\lim_{\varepsilon \to 0^{+}}\int (1+\varepsilon)^{\frac{x}{\varepsilon}}dx$ looks very wrong for many reasons. So is $(1)$ just a joke?