13

Evaluate the integral $\int_{-\infty}^{\infty}\binom{n}{x}dx$.

This question came in Cambridge Integration Bee and I have no clue what to do in this.

I rewrote $\binom{n}{x}$ as $\frac{n!}{{x!}{(n-x)!}}$ but I don't know how to integrate those factorials. Also what to do if $n$ isn't an integer as no information regarding it is given?

amWhy
  • 210,739

3 Answers3

30

Since $$\dbinom {n}{x}=\dbinom{n-1}{x}+ \dbinom{n-1}{x-1}$$ $$I_n:= \int_{-\infty} ^ \infty \dbinom{n}{x}dx= \color{red}{\int_{-\infty} ^ \infty \dbinom{n-1}{x}dx}+ \color{blue}{\int_{-\infty} ^ \infty \dbinom{n-1}{x-1}dx}$$

And by using a substitution $x=t-1$ then replacing $t$ with $x$ one gets $$I_{n-1}= \color{red}{\int_{-\infty} ^ \infty \dbinom{n-1}{x}dx}= \color{blue}{\int_{-\infty} ^ \infty \dbinom{n-1}{x-1}dx}$$

then $I_n = 2I_{n-1}$ so $I_n= 2^n I_0 $

$$I_0= \int_{-\infty} ^ \infty \dbinom{0}{x}dx= \int_{-\infty} ^ \infty \frac{1}{(x)!(-x)!}dx$$

$$\Gamma(1+x)=x!$$ $$\Gamma(x) \Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$$

$$I_0 =\int_{-\infty} ^ \infty \frac{\sin(\pi x)}{\pi x}dx= \frac{1}{\pi} \int_{-\infty} ^ \infty \frac{\sin( x)}{x}dx $$

and since $\displaystyle \int_{-\infty} ^ \infty \frac{\sin( x)}{x}dx = \pi$ so $I_0 =1 $ and $I_n = 2^n $

Aig
  • 5,725
pie
  • 8,483
  • Pls prove that formula of pi/sin(pi x)... How did that come up?? – Blue Cat Blues Apr 24 '24 at 08:57
  • Nice answer. What if $n$ is not an integer? – Cyankite Apr 24 '24 at 09:01
  • @MathStackexchangeIsNotSoBad This is a known formula there are may different to prove this see this for a proof – pie Apr 24 '24 at 09:03
  • @Cyankite I don't think a closed form exists if $n$ is not an integer. – pie Apr 24 '24 at 09:04
  • 2
    This is more than elegant ! (+1) for sure. The formula seems to work for non integer values of $n$. – Claude Leibovici Apr 24 '24 at 10:01
  • This reasoning seems a bit like a vacuous truth. The first equation is only true for integer $x$ and $n$, and when we assume that this binomial coefficient is actually a beta function $${n \choose x} = \frac{1}{(n+1)B(n-k+1,k+1)}$$ then it is also true for any $k>0$. But what about the negative numbers? The beta function can be extended to negative numbers but do all derived properties still hold? – Sextus Empiricus Apr 24 '24 at 16:38
12

You get the result from one of the Ramanujan's Papers, formula 1.2, by setting $n=0$, $\alpha=0$, $\beta=n+2$, and using the fact that $$ \binom{n}{x}=\frac{\Gamma(n+1)}{\Gamma(n-x+1)\Gamma(x+1)} $$ so that \begin{align*} \int \binom{n}{x} dx &=\int \frac{\Gamma(n+1)}{\Gamma(n+2-y)\Gamma(y)} dy\\ &=\frac1{n+1}\int \frac{\Gamma(n+2)}{\Gamma(n+2-y)\Gamma(y)} dy\\ &=\frac1{n+1}\int \frac{dy}{\mathrm{B}(n+2-y,y)}. \end{align*}

Aig
  • 5,725
van der Wolf
  • 5,743
  • 4
  • 13
12

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{{\displaystyle #1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\sr}[2]{\,\,\,\stackrel{{#1}}{{#2}}\,\,\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} & \color{#44f}{\int_{-\infty}^{\infty}{n \choose x}\dd x} = \int_{-\infty}^{\infty}\bracks{\int_{-\pi}^{\pi}{\pars{1 + \expo{\ic\phi}}^{n} \over \expo{\ic x\phi}}{\dd\phi \over 2\pi}}\dd x \\[5mm] = & \ \int_{-\pi}^{\pi}{\pars{1 + \expo{\ic\phi}}^{n}\,\ \overbrace{\int_{-\infty}^{\infty}\expo{-\ic\phi x}\, {\dd x \over 2\pi}}^{\ds{\delta\pars{\phi}}}}\,\ \,\dd\phi = \pars{1 + \expo{\ic 0}}^{n} = \bbx{\color{#44f}{2^{n}}} \\ & \end{align}

Felix Marin
  • 94,079
  • 2
    Can you explain the formula for $\binom nx$? – user Apr 29 '24 at 12:23
  • 1
    @user See https://en.wikipedia.org/wiki/Egorychev_method – user170231 Apr 29 '24 at 17:01
  • 3
    @user170231 I know this method being applied to integer $x$. Nothing else can be found in the reference you gave. So some additional work / explanation is needed. – user Apr 29 '24 at 19:42
  • @user Please take a look at https://www.instagram.com/p/Cyo5SY3yXlP/?igsh=MXg3M242dmh6eGF3aA== –  Sep 20 '24 at 01:19
  • @Dqrksun I would like to see a proof of the relation, unless it is the definition of $\binom nx$. – user Sep 20 '24 at 12:43
  • It would be useful to have a proof or verification of the result of this formal argument. – A rural reader Sep 20 '24 at 12:52
  • @user What do you mean? The proof is in the instagram post –  Sep 20 '24 at 14:13
  • Generally, $$\binom{y}{x}=\frac{e^{i\pi x}}{2\pi i}\oint_{C_R}\frac{(1-z)^y}{z^{x+1}}, dz-\frac{\sin \pi x}{x}\int_0^{1-R}(1-t)^{-x-1}t^y, dt$$

    where $C_R$ denotes the circle with radius $R$ on the complex plane centered at $0$

    –  Sep 20 '24 at 14:15
  • @Dqrksun I see no proof. Please start with definition of $\binom yx$. – user Sep 21 '24 at 17:56
  • @user What do you mean you see no proof? The derivation is in the second and the third slide. If you want to start from the definition of $\binom{y}{x}$, then start from the $4-$th line of third slide and read backwards to the start of second slide –  Sep 22 '24 at 02:36
  • @Dqrksun So far I did not see the second and the third slide. It's nice that now you've mentioned it. – user Sep 26 '24 at 11:43
  • @user It might be that you did not log in. –  Sep 27 '24 at 08:37
  • @Dqrksun I have no Instagram login and also do not have an intention to have it. – user Sep 28 '24 at 14:00