Define two polynomial sequences by $$ \cases{P_0(x)=x\\ Q_0(x)=1}\\ \cases{P_{n+1}(x)=P_n(x-1)Q_n(x+1)\\ Q_{n+1}(x)=P_n(x+1)Q_n(x-1)} $$ Is it true that the leading term of $ Q_n(x) - P_n(x) $ is $ 2^n \cdot (n-1)! \cdot x^{2^{n-1}-n} $ for all $ n \geq 1 $?
(From this post“the leading term of $g_n$ is $2^{n-1}(n-1)!x^{2^{n-1}-n}$.” I set $x_1=\dots=x_n=1$ to simplify the setting.)
Verification for $ n = 1 $ to $ 10 $.
var('x')
# P_0 and Q_0
P = [x]
Q = [1]
Compute P_n and Q_n for n=1 to 10
for n in range(10):
P_next = P[n].subs(x=x-1) * Q[n].subs(x=x+1)
Q_next = P[n].subs(x=x+1) * Q[n].subs(x=x-1)
P.append(P_next)
Q.append(Q_next)
for n in range(1, 11):
diff = (Q[n] - P[n]).expand()
LHS = diff.leading_coefficient(x) * x^diff.degree(x)
RHS = 2^n * factorial(n-1) * x^(2^(n-1) - n)
print(f"n={n}: {bool(LHS == RHS)}")
R.<x> = QQ[]P, Q = x, 1for n in range(1, 10+1): P, Q = P.subs(x=x-1)*Q.subs(x=x+1), P.subs(x=x+1)*Q.subs(x=x-1)show(points([(z.real(), z.imag()) for z,_ in (Q-P).roots(ring=CDF)]))– ploosu2 Jan 02 '25 at 15:52(Q[n]-P[n]).expand()for $\ n=1\ $ to $\ 11\ $ in the final loop of your code, I'd surmise that the leading term is $\ 2^n\cdot(n-1)!,x^{2^n-n-1}\ .$ – lonza leggiera Jan 03 '25 at 01:26