Assume that $|det(H)|=n^{n/2}$.
Let $\sigma_i$ be the singular values of $H$.
We have $\det(H)^2=\det(HH^T)=\prod_i \sigma_i^2$, therefore $\prod_i \sigma_i^2=n^n$. By the AM-GM inequality, $$n=(\prod_i \sigma_i^2)^{1/n}\leq {\frac 1 n}\sum_i \sigma_i^2$$
On the other hand,
$${\frac 1 n}\sum_i \sigma_i^2={\frac 1 n}Tr(H^TH)={\frac 1 n}\sum_{ij}h_{ij}^2\leq {\frac 1 n}\sum_{ij}1=n^2/n=n$$
Combining with the first inequality, we see that
$${\frac 1 n}\sum_i \sigma_i^2=\left(\prod_i\sigma_i^2\right)^{1/n}$$
Thus, the AM-GM inequality is actually an equality, which implies that $\sigma_1=\sigma_2=\dots=\sigma_n$.
This in turn implies that $H/\sqrt{n}$ is an orthogonal matrix. In particular, each column of $H$ must have norm $\sqrt{n}$, and under the constraint $h_{ij}^2\leq 1$, this can only be achieved when the entries are $\pm 1$.
Thus, $H$ is a matrix with $h_{ij} = \pm 1$ with mutually orthogonal columns, or a Hadamard matrix.