Question:
What is the closed form of this following integral? $$ \int_{0}^{\frac{\pi}{2}} x \log(1-\cos x) \,dx.$$
Here is my solution
we know that $$\displaystyle{\sum\limits_{n = 1}^\infty {\frac{{\cos nx}}{n}} = \frac{1}{2}\left( {\sum\limits_{n = 1}^\infty {\frac{{{e^{inx}}}}{n}} + \sum\limits_{n = 1}^\infty {\frac{{{e^{ - inx}}}}{n}} } \right) = - \frac{1}{2}\log \left( {1 - {e^{ix}}} \right)\left( {1 - {e^{ - ix}}} \right) = - \frac{1}{2}\log 2\left( {1 - \cos x} \right) = }$$
$$\displaystyle{ = - \frac{{\log 2}}{2} - \frac{1}{2}\log \left( {1 - \cos x} \right) \Rightarrow \boxed{\log \left( {1 - \cos x} \right) = - \log 2 - 2\sum\limits_{n = 1}^\infty {\frac{{\cos nx}}{n}} }}$$, so
$$\displaystyle{\int\limits_0^{\pi /2} {x\log \left( {1 - \cos x} \right)dx} = - \log 2\int\limits_0^{\pi /2} {x\,dx} - 2\sum\limits_{n = 1}^\infty {\frac{1}{n}\int\limits_0^{\pi /2} {x\cos nx\,dx} } = - \frac{{{\pi ^2}\log 2}}{8} - 2\sum\limits_{n = 1}^\infty {\frac{1}{n}\left( { - \frac{1}{{{n^2}}} + \frac{{\cos \dfrac{{n\pi }}{2}}}{{{n^2}}} + \pi \frac{{\sin \dfrac{{n\pi }}{2}}}{{2n}}} \right)} = }$$
$$\displaystyle{ = - \frac{{{\pi ^2}\log 2}}{8} + 2\zeta \left( 3 \right) - 2\sum\limits_{n = 1}^\infty {\frac{{\cos \dfrac{{n\pi }}{2}}}{{{n^3}}}} - \pi \sum\limits_{n = 1}^\infty {\frac{{\sin \dfrac{{n\pi }}{2}}}{{{n^2}}}} = - \frac{{{\pi ^2}\log 2}}{8} + 2\zeta \left( 3 \right) - \sum\limits_{n = 1}^\infty {\frac{{\left( {{i^n} + {{\left( { - i} \right)}^n}} \right)}}{{{n^3}}}} - \frac{\pi }{{2i}}\sum\limits_{n = 1}^\infty {\frac{{\left( {{i^n} - {{\left( { - i} \right)}^n}} \right)}}{{{n^2}}}} \Rightarrow }$$
$$\displaystyle{ \Rightarrow \boxed{\int\limits_0^{\pi /2} {x\log \left( {1 - \cos x} \right)dx} = - \frac{{{\pi ^2}\log 2}}{8} + 2\zeta \left( 3 \right) - \left( {L{i_3}\left( i \right) + L{i_3}\left( { - i} \right)} \right) - \frac{\pi }{{2i}}\left( {L{i_2}\left( i \right) - L{i_2}\left( { - i} \right)} \right)}}$$
However, it holds that $$\displaystyle{L{i_3}\left( z \right) + L{i_3}\left( { - z} \right) = \frac{1}{4}L{i_3}\left( {{z^2}} \right)}$$ , so $$\displaystyle{L{i_3}\left( i \right) + L{i_3}\left( { - i} \right) = \frac{1}{4}L{i_3}\left( { - 1} \right) = \frac{1}{4}\sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}}}{{{n^3}}}} = - \frac{3}{{16}}\zeta \left( 3 \right)}$$
and $$\displaystyle{L{i_2}\left( i \right) - L{i_2}\left( { - i} \right) = \sum\limits_{n = 1}^\infty {\frac{{{i^n}}}{{{n^2}}}} - \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - i} \right)}^n}}}{{{n^2}}}} = \sum\limits_{n = 1}^\infty {\frac{{{i^{2n - 1}}}}{{{{\left( {2n - 1} \right)}^2}}}} + \sum\limits_{n = 1}^\infty {\frac{{{i^{2n}}}}{{{{\left( {2n} \right)}^2}}}} - \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - i} \right)}^{2n - 1}}}}{{{{\left( {2n - 1} \right)}^2}}}} - \sum\limits_{n = 1}^\infty {\frac{{{{\left( { - i} \right)}^{2n}}}}{{{{\left( {2n} \right)}^2}}}} = }$$
$$\displaystyle{ = 2\sum\limits_{n = 1}^\infty {\frac{{{i^{2n - 1}}}}{{{{\left( {2n - 1} \right)}^2}}}} = \frac{2}{i}\sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}}}{{{{\left( {2n - 1} \right)}^2}}}} = - 2i\sum\limits_{n = 1}^\infty {\frac{{{{\left( { - 1} \right)}^n}}}{{{{\left( {2n - 1} \right)}^2}}}} = 2i\sum\limits_{n = 0}^\infty {\frac{{{{\left( { - 1} \right)}^n}}}{{{{\left( {2n + 1} \right)}^2}}}} = 2i \cdot G}$$
Therefore, $$\displaystyle{\int\limits_0^{\pi /2} {x\log \left( {1 - \cos x} \right)dx} = - \frac{{{\pi ^2}\log 2}}{8} + 2\zeta \left( 3 \right) - \left( {L{i_3}\left( i \right) + L{i_3}\left( { - i} \right)} \right) - \frac{\pi }{{2i}}\left( {L{i_2}\left( i \right) - L{i_2}\left( { - i} \right)} \right) = }$$
$$\displaystyle{ = - \frac{{{\pi ^2}\log 2}}{8} + 2\zeta \left( 3 \right) + \frac{3}{{16}}\zeta \left( 3 \right) - \frac{\pi }{{2i}}\left( {2i \cdot G} \right) = - \frac{{{\pi ^2}\log 2}}{8} + \frac{{35}}{{16}}\zeta \left( 3 \right) - \pi \cdot G}.$$
Sorry to the community for the misunderstanding. When DecarbonatedOdessa asked, "Is there a question in there somewhere?" I misunderstood what they were asking and answered, "Yes, on AOPS, but I’m trying a new way to find the answer." It was my mistake; they asked me something else, and I answered something else.
What should I add to my question to get it reopened?