I need to prove that using maximum likelihood estimation on both parameters of normal distribution indeed maximises likelihood function.
So, the log-likelihood function for parameters $\sigma$ and $m$ is $$ \ln L = -\frac{n}{2}\ln2 \pi - n \ln \sigma - \sum_{i=1}^n\dfrac{1}{2\sigma^2}(x_i - m)^2 $$
After differentiating we get two equations $$ \dfrac{\partial \ln L}{\partial \sigma} = - \dfrac{n}{\sigma} + \sum_{i=1}^n\dfrac{1}{\sigma^3}(x_i - m)^2 = 0$$ $$ \dfrac{\partial \ln L}{\partial m} = \sum_{i=1}^n\dfrac{1}{\sigma^2}(x_i - m) = 0 $$
And now we get the estimators: $$ m = \dfrac{\sum_{i=1}^n x_i}{n} $$ $$ \sigma = \sqrt{\dfrac{\sum_{i=1}^n\left(x_i - \dfrac{\sum_{i=1}^n x_i}{n}\right)^2}{n}}$$
Now I need to prove that this is local maximum. To do this I need to get second-order derivatives, and check that Hessian matrix is negative-definite.
The derivatives are $$ A = \dfrac{\partial^2 \ln L}{\partial \sigma^2} = \dfrac{n}{\sigma^2} - \sum_{i=1}^n\dfrac{3}{\sigma^4}(x_i - m)^2 = \dfrac{-2n^2}{\sum_{i=1}^n\left(x_i - \dfrac{\sum_{i=1}^n x_i}{n}\right)^2} $$ $$ C = \dfrac{\partial^2 \ln L}{\partial m^2} = -\dfrac{n}{\sigma^2} = -\dfrac{n^2}{\sum_{i=1}^n\left(x_i - \dfrac{\sum_{i=1}^n x_i}{n}\right)^2} $$ $$ B^2 = \left(\dfrac{\partial^2 \ln L}{\partial m \partial \sigma}\right)^2 = \left(\dfrac{-2\sum_{i=1}^n (x_i-m)}{\sigma^3}\right)^2 = \dfrac{4\left[\sum_{i=1}^n\left(x_i - \dfrac{\sum_{i=1}^n x_i}{n}\right)\right]^2}{\left(\sum_{i=1}^n(x_i - m)^2\right)^3} $$
And that's where I get lost. I should prove that $AC - B^2 > 0$ but it doesn't look to me as something clearly positive.