0

I have to find the Eigen values of the following matrix: $$ \begin{bmatrix} 2 & -1 & 0 & 0\\ 0 & 3 & 0 & 0\\ 0 & 0 & -2 & 0\\ 0 & 0 & -1 &4 \end{bmatrix} $$

I used row operations : R4->R3-2R4

and I got : $$ \begin{bmatrix} 2 &-1 & 0 & 0\\ 0 & 3 & 0 & 0\\ 0 & 0 & -2 & 0\\ 0 & 0 & 0 & -8 \end{bmatrix} $$ Now, for a triangular matrix, Eigen values are the diagonal elements. Hence, E.V = {2,3,-2,-8}

But we also now that,

$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$SUM of Eigen values = Trace(Matrix)

$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$$\>$PRODUCT of Eigen values = Det(Matrix).

But by that logic the above mentioned Eigen values are not satisfied. Am i doing something wrong?

1 Answers1

1

As pointed in the comments, row operations, in general, do not preserve eigenvalues.

The operation $R_4\to R_3- 2R_4 $ which you applied, does not even preserve the determinant... The determinant after this row operation is scaled by a factor of $-2$.

$$A=\begin{bmatrix} \color{red}2 & \color{red}{-1} & 0 & 0\\ \color{red} 0 & \color{red} 3 & 0 & 0\\ 0 & 0 & \color{blue}{-2} & \color{blue}{0}\\ 0 & 0 & \color{blue}{-1} &\color{blue}{4} \end{bmatrix}$$

You can easily find the eigenvalues of this matrix by observing that it is block diagonal matrix (consisting of two $2\times 2$ blocks along the diagonal).

The red block is upper triangular and has eigenvalues $2$ and $3$.

The blue block is lower triangular and has eigenvalues $-2$ and $4$.

Thus, the eigenvalues of $A$ are $2$, $3$, $-2$, $4$. See this why.

Nothing special
  • 3,690
  • 1
  • 7
  • 27