$\large\textbf{1.}$ Note that the value of $f(x)$ does not depend on the finitely many leading digits in the decimal expansion of $x$:
$$ f(x) = \limsup_{n\to\infty} \frac{\mathbf{1}[x_{1}=3] + \sum_{i=1}^{n-1} \mathbf{1}[x_{i+1}=3]}{n} = f(10x \text{ mod }1) $$
An important consequence is that we have
$$ f\left(\left(\frac{k}{10^m},\frac{k+1}{10^m}\right)\right) = f((0, 1)) $$
for any integers $m \geq 0$ and $0 \leq k < 10^m$. Since any non-empty openset of $(0, 1)$ contains an interval of the form $(\frac{k}{10^m},\frac{k+1}{10^m})$ for some $m$ and $k$, it suffices to show that $f((0, 1))=[0,1]$ holds.
$\large\textbf{2.}$ Among the many different ways of showing $f((0, 1)) = [0, 1]$, let me demonstrate a probabilistic one:
For each $p \in [0, 1]$, let $(Y_i)_{i=1}^{\infty}$ be a sequence of independent Bernoulli random variables with parameter $p$. Then by the strong law of large numbers,
$$ \lim_{n\to\infty} \frac{Y_1 + \cdots + Y_n}{n} = p \qquad \text{with probability one.} $$
Now by setting $X = \sum_{i=1}^{\infty} \frac{3 Y_i + 2(1 - Y_i)}{10^i}$ and letting $(X_i)_{i=1}^{\infty}$ the deciman expansion of $X$, we get $\mathbf{1}[X_i = 3] = Y_i$, hence
$$ f(X) = p \qquad \text{with probability one.} $$
Moreover, we have $0.222\ldots \leq X \leq 0.333\ldots$, hence $0 < X < 1$. This proves that there exists a number $x \in (0, 1)$ such that $f(x) = p$, hence the desired claim follows.
$\large\textbf{3.}$ (Optional) A less elegant proof of $f((0, 1)) = [0, 1]$ is as follows: Fix $p \in [0, 1]$. We will construct a real number $x \in (0, 1)$ such that $f(x) = p$.
Fix an increasing sequence $\bbox[color:blue; padding:2px; background:#F2FAFF;]{(N_k)_{k=1}^{\infty}}$ of positive integers such that the following conditions hold:
$$ \frac{k}{N_k} \to 0 \qquad\text{and}\qquad \frac{N_{k+1} - N_k}{N_k} \to 0. $$
For example, we may set $N_k = k^2$. These technical conditions will only be used in the very last step, and until then, you don't have to worry about it.
For each $k$ and with $\bbox[color:blue; padding:2px; background:#F2FAFF;]{M_k} = N_k - N_{k-1}$, let $\bbox[color:blue; padding:2px; background:#F2FAFF;]{(x_{k,i})_{i=1}^{M_k}} $ be a finite sequence consisting of $2$'s and $3$'s so that $\sum_{i=1}^{M_k} \mathbf{1}[x_{k,i} = 3] = \lfloor M_k p\rfloor$ holds. Note that we have
$$ \left| \frac{\sum_{i=1}^{M_k} \mathbf{1}[x_{k,i} = 3]}{M_k} - p \right| = \left| \frac{\lfloor M_k p \rfloor}{M_k} - p \right| \leq \frac{1}{M_k}. $$
We concatenate the sequences $(x_{k,i})_{i=1}^{M_k}$ for $k = 1, 2, \ldots$ to obtain a 1D sequence $\bbox[color:blue; padding:2px; background:#F2FAFF;]{(x_i)_{i=1}^{\infty}}$:
\begin{align*} (x_i)_{i=1}^{\infty} &= (x_{1,i})_{i=1}^{M_1} \oplus (x_{2,i})_{i=1}^{M_2} \oplus \cdots \oplus (x_{k,i})_{i=1}^{M_k} \oplus \cdots \\ &= (x_{1,1}, \ldots, x_{1,M_1}, x_{2, 1}, \ldots, x_{2, M_2}, \ldots, x_{k, 1}, \ldots, x_{k, M_k}, \ldots). \end{align*}
Then we define $\bbox[color:blue; padding:2px; background:#F2FAFF;]{x}$ as the real number having $(x_i)_{i=1}^{\infty}$ as its decimal expansion:
$$ x = \sum_{i=1}^{\infty} \frac{x_i}{10^i} $$
Then for any $n$ and with $k$ such that $N_k < n \leq N_{k+1}$,
\begin{align*}
&\left| \frac{\sum_{i=1}^{n} \mathbf{1}[x_i = 3]}{n} - p \right| \\
&\leq \frac{1}{n} \Biggl( \sum_{l=1}^{k} \left| \sum_{i=1}^{M_l} \mathbf{1}[x_{l,i} = 3] - M_k p \right|
+ \left| \sum_{i=1}^{n - N_k} \mathbf{1}[x_{k+1,i} = 3] - (n - N_k) p \right| \Biggr) \\
&\leq \sum_{l=1}^{k} \frac{M_l}{n} \left| \frac{\sum_{i=1}^{M_l} \mathbf{1}[x_{l,i} = 3]}{M_l} - p \right|
+ \frac{n - N_k}{n} \\
&\leq \frac{k}{N_k} + \frac{N_{k+1} - N_k}{N_k}
\to 0.
\end{align*}
Therefore we get $f(x) = p$.