Since Möbius strips cannot be oriented, the calculation of surface area is meaningless; perhaps that is the reason why I have never seen such problem. However, the following φ is a parameter representation of the Mobius strip and it should be possible to mechanically fit the usual surface area formula to the phi above (See the problem, below).
$\varphi:\left(r,t\right)\in D \mapsto(\varphi_1\left(r,t\right),\varphi_2\left(r,t\right),\varphi_3\left(r,t\right)\in\mathbb{R^3}$
- $\varphi_1\left(r,t\right)=\cos{\left(2t\right)}\left(r\cos{\left(t\right)}+2\right)$
- $\varphi_2\left(r,t\right)=\sin{\left(2t\right)}\left(r\cos{\left(t\right)}+2\right)$
- $\varphi_3\left(r,t\right)=r\sin{\left(t\right)}$
D:={(r,t)|-1≦r≦1,0≦t≦π}
So that, the problem we need to address can be formulated as follows;
The Problem
Calculate the the following double-integral; $$\int_{r=-1}^{r=1}\int_{t=0}^{t=\pi}f\left(r,t\right)\ \ drdt$$ Here,
$f:D\rightarrow\mathbb{R}$, D:={(r,t)|-1≦r≦1,0≦t≦π} be defined as
$$f(r,t) = \left\| \frac{\partial \varphi}{\partial r} \times \frac{\partial \varphi}{\partial t} \right\|$$
As far as I have calculated, $$\frac{\partial\varphi}{\partial r}=\left(\begin{matrix}cos\left(2t\right)cos\left(t\right)\\sin\left(2t\right)cos\left(t\right)\\sin\left(t\right)\\\end{matrix}\right)$$ $$\frac{\partial\varphi}{\partial t}=r\left(\begin{matrix}-2sin(2t)cos(t)-sin(t)cos(2t)\\2cos(2t)cos(t)-sin(2t)sin(t)\\cos(t)\\\end{matrix}\right)+4\left(\begin{matrix}-sin(2t)\\cos(2t)\\0\\\end{matrix}\right) =\left(\begin{matrix}r(-2sin(2t)cos(t)-sin(t)cos(2t))-4sin(2t)\\r(2cos(2t)cos(t)-sin(2t)sin(t))+4cos(2t)\\rcos(t)\\\end{matrix}\right)$$
So, $$\left(\frac{\partial\varphi}{\partial r}\times\frac{\partial\varphi}{\partial t}\right)=\left(\begin{matrix}sin(2t)cos(t)rcos(t)\ \\sin(t)\left(r(-2sin(2t)cos(t)-sin(t)cos(2t))-4sin(2t)\right)\\cos(2t)cos(t)(r(2cos(2t)cos(t)-sin(2t)sin(t))+4cos(2t))\\\end{matrix}\right) -\left(\begin{matrix}sin(t)\ \ \left(r(2cos(2t)cos(t)-sin(2t)sin(t)\ +4cos(2t)\right)\\cos(2t)cos(t)rcos(t)\\sin(2t)cos(t)\left(r(-2sin(2t)cos(t)-sin(t)cos(2t))-4sin(2t)\right)\\\end{matrix}\right) =\left(\begin{matrix}rsin\left(2t\right)-cos\left(2t\right)sin\left(2t\right)-4sin\left(t\right)cos\left(2t\right)\\-rsin^2\left(2t\right)-rcos\left(2t\right)-4sin\left(t\right)sin\left(2t\right)\\2rcos^2\left(t\right)+4cos\left(t\right)\\\end{matrix}\right)$$
So, the $f$ may be $$f\left(r,t\right)=\sqrt{r^2+4\left(rcos\left(t\right)+2\right)^2}.$$ So the double-integral, we'd like to caluculate is $$\int_{r=-1}^{r=1}\int_{t=0}^{t=\pi}\sqrt{r^2+4\left(rcos\left(t\right)+2\right)^2}\ \ drdt$$
So, anyway What I would like to ask of you all are
- (1)Confirm that there are no calculation errors in the calculations of the $f$
- (2)Graphing of the correctly calculated $f$
- (3)Calculate the double integral of $f$
- (4)If possible, a discussion of why the calculation of the area is inconvenient even though this integral can probably be done (perhaps different areas for the same Möbius wheel depending on how the integral interval is taken?)
See also, Derive Cartesian cubic Möbius strip from parametric