I get these issues while dealing with curves, for example If i want to represent a point on a parabola $ax^2+by^2+2hxy+2gx+2fy+c=0$ $(h^2=ab)$in the form $(p,q)$, if I use ($p,\sqrt{q \text{ with respect to } p}$) to show the coordinates of a point, negative values of y cannot be represented because of root symbol. Is there a parametric form (like I know of circles) for this type of parabola so that we can show any point on a parabola?
2 Answers
You're starting from the algebraic equation
$ a x^2 + b y^2 + 2 h xy + 2 g x + 2 f y + c =0 $
Define the vector $ r = \begin{bmatrix} x \\ y \end{bmatrix} $, then the above equation can be written as follows
$ r^T A r + B^T r + c = 0 $
where
$ A = \begin{bmatrix} a && h \\ h && b \end{bmatrix} $
$ B = \begin{bmatrix} 2 g \\ 2 f \end{bmatrix} $
The first step to find the parametric equation is to diagonalize $A$. When you do that, you will get
$ A = R D R^T $
where
$ D = \begin{bmatrix} D_{11} && 0 \\ 0 && 0 \end{bmatrix} $
Define $ u = R^T r $ , then
$ u^T D u + B^T R u + c = 0$
Let the vector $B^T R = G^T $, then the equation now reads
$ D_{11} u_1^2 + G_1 u_1 + G_2 u_2 + c = 0 $
Complete the square in $u_1$ to obtain
$ D_{11} \left( u_1 + \dfrac{G_1}{2 D_{11} } \right)^2 + G_2 u_2 + c - \dfrac{G_1^2}{4 D_{11} } = 0 $
Factor $G_2$ in the terms following it:
$ D_{11} \left( u_1 + \dfrac{G_1}{2 D_{11}} \right)^2 + G_2 \left( u_2 + \dfrac{c}{G_2} - \dfrac{G_1^2}{4 G_2 D_{11} } \right) = 0 $
Divide through by $D_{11}$, this will give you,
$ \left( u_1 + \dfrac{G_1}{2 D_{11}} \right)^2 + \dfrac{G_2}{D_{11}} \left( u_2 + \dfrac{c}{G_2} - \dfrac{G_1^2}{4 G_2 D_{11} } \right) = 0 $
Define
$u_{10} = - \dfrac{G_1}{2 D_{11}} $
$u_{20} = - \dfrac{c}{G_2} + \dfrac{G_1^2}{4 G_2 D_{11} } $
$ 4 p = - \dfrac{G_2}{D_{11}} $
Then the equation now reads
$ ( u_1 - u_{10} )^2 = 4 p ( u_2 - u_{20} ) $
Which is a parabola in $(u_1, u_2)$ plane.
To parameterize it, set
$ u_1 - u_{10} = t $
Then
$ u_2 - u_{20} = \dfrac{t^2}{4 p} $
i.e.
$(u_1, u_2) = (u_{10}, u_{20} ) + (t , \dfrac{1}{4 p} t^2 ) $
Now, recall that $ r = R u $, then the parametric equation of $r$ is
$ r = R \big( (u_{10}, u_{20} ) + (t , \dfrac{1}{4 p} t^2 ) \big) $
Define the vector $ u_0 = \begin{bmatrix} u_{10} \\ u_{20} \end{bmatrix} $, then
$ r = R u_0 + R \begin{bmatrix} t \\ \dfrac{1}{4p} t^2 \end{bmatrix} $
Let the vector $v_0 = R u_0$, and recall that
$ R = \begin{bmatrix} \cos \theta && - \sin \theta \\ \sin \theta && \cos \theta \end{bmatrix} $
Then
$ r = v_0 + t \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} + \dfrac{t^2}{4p} \begin{bmatrix} - \sin \theta \\ \cos \theta \end{bmatrix} $
I've coded the above formulas into a small program and verified that it works correctly.
Note that $$a(ax^2+by^2+2hxy+2gx+2fy+c)=\\(ax+hy)^2+(ab-h^2)y^2+2agx+2afy+ac=\\(ax+hy)^2+2agx+2afy+ac=0,$$ since $ab=h^2.$ Assuming $a\neq 0$ and using the linked answer with $(Ax+Cy)^2+Dx+Ey+F=0,$ we get
$$(x,y)=(\frac{Ct^2-Et+CF}{AE-CD}, -\frac{At^2-Dt+AF}{AE-CD})$$ or $$(x,y)=(\frac1{2a}\frac{bt^2-2fht+abc}{fh-bg}, -\frac12\frac{t^2-2gt+ac}{af-gh})$$ For example, the general form equation for a parabola from focus $(f_x,f_y)$ and directrix $l x+m y+n=0:$ $$(x-f_x)^2+(y-f_y)^2=(lx+my+n)^2/(l^2+m^2)$$ has parametrization $$(x,y)=(\frac{lt^2-2m(f_y(l^2+m^2)+mn)t+lm^2((f_x^2+f_y^2)(l^2+m^2)-n^2)) }{2m^2(l^2+m^2)(l f_x + m f_y + n)},\frac{t^2+2(f_x(l^2+m^2)+ln)t+m^2((f_x^2+f_y^2)(l^2+m^2)-n^2)}{2m(l^2+m^2)(l f_x + m f_y + n)}).$$
- 6,019