I would like to extend the domain of the following function:
$$\text{Li}_0^{(1,0)}(z):=-\sum_{n=1}^{\infty}\ln(n)z^{n}\qquad\text{where }|z|<1$$
The part in red is the series, the part in green is a hypothetical extension
I'll start by saying that I don't know any techniques for doing something like this, so any advice (links, names of theorems or similar) is useful.
I could only find the value in $x=-1$
$$\text{Li}_0^{(1,0)}(-1)=\lim_{s\to 0}\left[ \sum_{n=1}^{\infty} \frac{(-1)^n\ln(n)}{n^s}\right] = -\frac{1}{2}\ln\left(\frac{\pi}{2}\right)$$
I've searched for possible representations on Wolfram, but none include the one with $\nu=0$
Unfortunately I found the integral representation of polylogarithms $\text{Li}_{\nu}(z)$ only for $\Re(\nu)>0$
From a computational point of view a series is heavier than an integral, so I was wondering if it was possible to represent $$\text{Li}_{0}^{(1,0)}(z):=\left.\frac{\partial}{\partial\nu}\text{Li}_{\nu}(z)\right|_{\nu=0}$$ without using infinite sums or products.
the only formula I've found that include zero is this:
$$\text{Li}_{\nu}(z) = -\frac{i}{2 π} \int_{-i ∞ + γ}^{i ∞ + γ} (-t)^{1 - \nu} (-z)^{-t} Γ(-t) Γ(t) \mathrm{d}t$$ $$\text{ for }(-1<γ<0\text{ and }z\neq 0\text{ and }(\text{arg}(-z)<π\text{ or }\Re(\nu)>1))$$
So
$$\text{Li}^{(1,0)}_{\nu}(z) = \frac{i}{2 π} \int_{-i ∞ + γ}^{i ∞ + γ} (-t)^{1 - \nu}\ln(-t) (-z)^{-t} Γ(-t) Γ(t) \mathrm{d}t$$ $$\text{Li}^{(1,0)}_{0}(z) = -\frac{i}{2 π} \int_{-i ∞ + γ}^{i ∞ + γ} \ln(-t) (-z)^{-t} Γ(-t) Γ(t+1) \mathrm{d}t$$ $$\text{Li}^{(1,0)}_{0}(z) = \frac{i}{2} \int_{-i ∞ + γ}^{i ∞ + γ} \ln(-t) (-z)^{-t} \csc(\pi t) \mathrm{d}t$$
But with this function I would also like to work with graphs and I don't use programs that know how to manage this type of representations with complex numbers.
Would anyone be able to suggest an alternative method to represent it?
Update 1
The graph is something like this:
Update 2
I obtained the following property: $$\Re\left[\text{Li}_0^{(1,0)}\left(e^{2\pi i x}\right)\right]=-\frac{1}{2}\left(\gamma+\ln\left(2\pi\right)+\frac{\psi\left(x\right)+\psi\left(1-x\right)}{2}\right)\qquad\text{for } 0<x<1$$
Hence also the following formulas for $n\geq 1$: $$\begin{align}\Re\left[\text{Li}_{-2n}^{(1,0)}\left(e^{2\pi i x}\right)\right]&=&\frac{(-1)^{n-1}}{(2\pi)^{2n}}\frac{\psi^{(2n)}\left(x\right)+\psi^{(2n)}\left(1-x\right)}{4}\\\Im\left[\text{Li}_{-(2n-1)}^{(1,0)}\left(e^{2\pi i x}\right)\right]&=&\frac{(-1)^{n-1}}{(2\pi)^{2n-1}}\frac{\psi^{(2n-1)}\left(x\right)-\psi^{(2n-1)}\left(1-x\right)}{4}\end{align}$$

