The conditional expectation must be a function of $X_0X_1,...,X_0X_n$. In other words, there must exist a function $g(x_1,...,x_n):[0,1]^n\mapsto\mathbb{R}$ such that
$$\mathbb{E}(X_0|X_0X_1,...,X_0X_n)=g(X_0X_1,...,X_0X_n)$$
and for all function $f(x_1,...,x_n) \in \mathcal{F}_n^V$, we must have:
$$\mathbb{E}(f(X_0X_1,...,X_0X_n)(X_0-g(X_0X_1,...,X_0X_n))=0 \tag{1}$$
We transform the LHS of $(1)$ by using conditional expectation and by interchanging the integral and expectation.
$$\begin{align}
0 &= \mathbb{E}(f(X_0X_1,...,X_0X_n)(X_0-g(X_0X_1,...,X_0X_n))\\
&=\mathbb{E}(\color{blue}{\mathbb{E}(f(X_0X_1,...,X_0X_n)(X_0-g(X_0X_1,...,X_0X_n)|X_1,...,X_n)})\\
&=\mathbb{E}\left(\color{blue}{\int_0^1f(tX_1,...,tX_n)(t-g(tX_1,...,tX_n)|X_1,...,X_n)dt}\right)\\
&=\mathbb{E}\left(\int_0^1f(tX_1,...,tX_n)(t-g(tX_1,...,tX_n))dt\right)\\
&=\int_0^1\mathbb{E}\left(f(tX_1,...,tX_n)(t-g(tX_1,...,tX_n))\right)dt \hspace{0.3cm}\text{interchange integral and expectation}\\
&=\int_0^1\left(\int_{\{(x_i)_{i=1,...,n} \in[0,1]^n \}}f(tx_1,...,tx_n)(t-g(tx_1,...,tx_n))dx_1..dx_n\right)dt\\
&=\int_0^1\left(\frac{1}{t^n}\int_{\{(x_i)_{i=1,...,n} \in[0,1]^n \}}f(tx_1,...,tx_n)(t-g(tx_1,...,tx_n))d(tx_1)..d(tx_n)\right)dt\tag{2}
\end{align} $$
Make a change of variable $(y_1,...,y_n) = (tx_1,...,tx_n)$ in the inner integral of $(2)$, we have:
$$\begin{align}
0 &=\int_0^1\left(\frac{1}{t^n}\int_{\{(y_i)_{i=1,...,n} \in[0,t]^n \}}f(y_1,...,y_n)(t-g(y_1,...,y_n))dy_1..dy_n\right)dt\\
&=\int_0^1\left(\int_{\{(y_i)_{i=1,...,n} \in[0,1]^n \}}\left(\frac{1}{t^n}\left(
\prod_{i=1}^n \mathbf{1}_{\{y_i \le t \}}\right)f(y_1,...,y_n)(t-g(y_1,...,y_n))\right)dy_1..dy_n\right)dt\\
&=\int_{\{(y_i)_{i=1,...,n} \in[0,1]^n \}}\left(\int_0^1\left(\frac{1}{t^n}\left(
\prod_{i=1}^n \mathbf{1}_{\{y_i \le t \}}\right)f(y_1,...,y_n)(t-g(y_1,...,y_n))\right)dt\right)dy_1..dy_n \\
&=\int_{\{(y_i)_{i=1,...,n} \in[0,1]^n \}}f(y_1,...,y_n)\left(\color{red}{\int_0^1\left(\frac{1}{t^n}\left(
\prod_{i=1}^n \mathbf{1}_{\{y_i \le t \}}\right)(t-g(y_1,...,y_n))\right)dt}\right)dy_1..dy_n \tag{3}
\end{align}$$
$(3)$ holds true for all function $f$, so we must have for all $(y_1,...,y_n)\in [0,1]^n$ :
$$\int_0^1\left(\frac{1}{t^n}\left(
\prod_{i=1}^n \mathbf{1}_{\{y_i \le t \}}\right)(t-g(y_1,...,y_n))\right)dt=0 \tag{4}$$
We notice that that $\prod_{i=1}^n \mathbf{1}_{\{y_i \le t \}} = \mathbf{1}_{\{t \ge \max{\{y_1,...,y_n\}} \}}$. From $(4)$, we have:
$$\begin{align}
0&=\int_0^1\left(\frac{1}{t^n}\left(
\prod_{i=1}^n \mathbf{1}_{\{y_i \le t \}}\right)(t-g(y_1,...,y_n))\right)dt\\
&=\int_0^1\mathbf{1}_{\{t \ge \max{\{y_1,...,y_n\}} \}}\left(\frac{1}{t^n}(t-g(y_1,...,y_n))\right)dt\\
&=\int_{\max{\{y_1,...,y_n\}}}^1\left(\frac{1}{t^{n-1}}-\frac{1}{t^{n}}g(y_1,...,y_n)\right)dt\\
&=\int_{\max{\{y_1,...,y_n\}}}^1\left(\frac{1}{t^{n-1}}-\frac{1}{t^{n}}g(y_1,...,y_n)\right)dt \tag{5}
\end{align}$$
From $(5)$, we deduce that:
$$\color{red}{g(y_1,...,y_n) = \frac{\int_{\max{y_1,...,y_n}}^1 t^{-(n-1)}dt}{\int_{\max{y_1,...,y_n}}^1 t^{-n}dt} = \frac{n-1}{n-2}\cdot \frac{\left( \max{\{y_1,...,y_n\}}\right)^{2-n} -1 }{\left( \max{\{y_1,...,y_n\}}\right)^{1-n} -1} \tag{6}} $$
We can conclude that:
$$\mathbb{E}(X_0|X_0X_1,...,X_0X_n)=g(X_0X_1,...,X_0X_n)$$
where $g$ is defined by $\color{red}{(6)}$.