I would like to prove the following result : let $(Xn)_n$ be a sequence in $L^{1}(\Omega,\mathcal{F}_t, \mathbb{P})$ that converges almost surely to $X\in L^1$. Then if $(X_n)_n$ is uniformly integrable, $X_n$ converges in $L^1$ to $X$.
Here is my attempt for the first implication :
By almost sure convergence we have
$$ \mathbb{P}(\{\omega : \forall k\in\mathbb{N}^{*}, \exists N\in\mathbb{N}, \forall n\geq N, \lvert X_n(\omega) - X(\omega)\rvert\leq\frac{1}{k}\}) = \mathbb{P}(\cap_{k\geq 1}\{\omega : \exists N\in\mathbb{N}, \forall n\geq N, \lvert X_n(\omega) - X(\omega)\rvert\leq\frac{1}{k}\}) = 1 $$
If we denote $A_k = \{\omega : \exists N\in\mathbb{N}, \forall n\geq N, \lvert X_n(\omega) - X(\omega)\rvert\leq\frac{1}{k}\}$ we see that for all $k\geq 1$ $\mathbb{P}(A_k)=1$ and $\mathbb{P}(A_{k}^{c})=0$.
Moreover
$$ \lvert X_n - X\rvert \leq \lvert X_n\rvert1_{A_{k}^{c}} + \lvert X\rvert1_{A_{k}^{c}} + \lvert X_n - X\rvert1_{A_{k}} $$
Now take $\epsilon>0$. By uniformly integrability of $X_n$ and $X$ we can find a $\delta>0$ such that $\mathbb{P}(B)\leq\delta$ implies that $\mathbb{E}(\lvert X_n\rvert1_{B})$ and $\mathbb{E}(\lvert X \rvert1_{B})$ are less than $\frac{\epsilon}{3}$. Clearly $A_{k}^{c}$ will always satisfy this condition. On the other hand, there exists $k$ big enough such that on $A_k$ we have the existence of $N$ such that for all $n\geq N$ we have $\lvert X_n(\omega) - X(\omega)\rvert\leq\frac{1}{k}\leq\frac{\epsilon}{3}$.
Thus we have
$$ \mathbb{E}(\lvert X_n - X\rvert)\leq 3 \frac{\epsilon}{3} = \epsilon $$
I would like to know if what I did is correct please, and if not have some hints in order to continue to work on this.
Thank you a lot !