Let $S$ be a uncountable set. Consider function $f: S\to R$. Define the norm $$ \|f\|=\sum_{x\in S}|f(x)|:=\sup_{\mbox {all finite subset A$\subset$ S }} \sum_{x\in A}|f(x)| $$
Now consider the normed space $X=\{f: \|f\|<\infty\}$. I try to prove that this normed space is not separable.
I try to find a uncountable subset $L\subset S$ so that for any $x, y \in L$, $\|x-y\|\ge 1$.
I consider the similar example as in Why is $l^\infty$ not separable?.
For any subset $I\subset \mathbb{N}$, define $f^I(k)=a_k^I=1$ if $k\in I$ otherwise $f^I(k)=0$ for $k\notin I$.
Then for any $I\neq J$, $f^I\neq f^J$, and $$ \|f^I-f^J\|=\sup_{A} \sum_{k\in A}|a^I_k-a^J_k| $$
However, I am stuck here on how to say this sum is greater than 1?