The Core Idea Is To Approximate $\sqrt{t}$ on $[0, 1]$
The trick is realizing that $|x| = \sqrt{x^2}$. If we can find a sequence of polynomials $p_n(t)$ that converges nicely to $\sqrt{t}$ for $t \in [0, 1]$, then $q_n(x) = p_n(x^2)$ will be polynomials in $x$ converging to $\sqrt{x^2} = |x|$ on $[-1, 1]$.
How to Find $\sqrt{t}$ Iteratively? We Can Do So by Using Newton's Method (Kinda)
We want to solve $y = \sqrt{t}$, or $y^2 - t = 0$. Newton's method for finding a root of $f(y) = y^2 - t = 0$ gives the iteration:
$y_{k+1} = y_k - \frac{f(y_k)}{f'(y_k)} = y_k - \frac{y_k^2 - t}{2y_k} = \frac{1}{2} \left( y_k + \frac{t}{y_k} \right)$
Problem: If $p_k(t)$ is our polynomial approximation at step $k$, the next step $p_{k+1}(t) = \frac{1}{2} (p_k(t) + t/p_k(t))$ involves division by $p_k(t)$, so it's generally a rational function, not a polynomial. We need polynomials.
So we will modify it to get a polynomial out of it:
The problematic term is the $2y_k$ in the denominator of Newton's update $\frac{y_k^2 - t}{2y_k}$. We need an iteration that only uses addition, subtraction, and multiplication.
Let's consider the update step $y_{k+1} = y_k - \text{correction}$. The correction term is $\frac{y_k^2 - t}{2y_k}$.
What if we replace the $2y_k$ in the denominator with a constant? A simple, convenient constant, especially if our approximations stay near $1$, is $2$.
Let's define a new iteration using this modified correction term:
$p_{k+1} = p_k - \frac{p_k^2 - t}{2}$
Now, simplify this expression:
$p_{k+1} = p_k - \frac{1}{2}p_k^2 + \frac{t}{2}$
$p_{k+1} = \frac{1}{2} (t + 2p_k - p_k^2)$
If $p_k(t)$ is a polynomial in $t$, then $p_{k+1}(t)$ is clearly also a polynomial in $t$. This looks like the formula we want.
Let $p(t)$ be our current polynomial approximation, satisfying $1 \ge p(t) \ge \sqrt{t}$ on $[0, 1]$. Let the next approximation be $q(t) = \frac{1}{2}(t + 2p(t) - p(t)^2)$. We need to show $p(t) \ge q(t)$ and $q(t) \ge \sqrt{t}$.
Show $p(t) \ge q(t)$:
$p(t) - q(t) = p(t) - \frac{1}{2}(t + 2p(t) - p(t)^2)$
$= \frac{1}{2} (2p(t) - t - 2p(t) + p(t)^2)$
$= \frac{1}{2} (p(t)^2 - t)$
Since we assumed $p(t) \ge \sqrt{t} \ge 0$, we have $p(t)^2 \ge (\sqrt{t})^2 = t$.
So, $p(t)^2 - t \ge 0$, which means $p(t) - q(t) \ge 0$. Thus $p(t) \ge q(t)$.
Show $q(t) \ge \sqrt{t}$:
$q(t) - \sqrt{t} = \frac{1}{2}(t + 2p(t) - p(t)^2) - \sqrt{t}$
$= \frac{1}{2} (t - 2\sqrt{t} + 2p(t) - p(t)^2)$
Now, let's rearrange cleverly by completing squares involving 1:
$= \frac{1}{2} [ (t - 2\sqrt{t} + 1) - (p(t)^2 - 2p(t) + 1) ]$
$= \frac{1}{2} [ (\sqrt{t} - 1)^2 - (p(t) - 1)^2 ]$
$= \frac{1}{2} [ (1 - \sqrt{t})^2 - (1 - p(t))^2 ]$
Since we assumed $1 \ge p(t) \ge \sqrt{t}$, we have $0 \le 1 - p(t) \le 1 - \sqrt{t}$.
Because these are non-negative quantities, squaring preserves the inequality: $(1 - p(t))^2 \le (1 - \sqrt{t})^2$.
Therefore, $(1 - \sqrt{t})^2 - (1 - p(t))^2 \ge 0$.
This means $q(t) - \sqrt{t} \ge 0$. Thus $q(t) \ge \sqrt{t}$.
We found an iteration $p_{k+1}(t) = \frac{1}{2}(t + 2p_k(t) - p_k(t)^2)$ that takes a polynomial $p_k(t)$ satisfying $1 \ge p_k(t) \ge \sqrt{t}$ and produces a new polynomial $p_{k+1}(t)$ satisfying $1 \ge p_k(t) \ge p_{k+1}(t) \ge \sqrt{t}$ (we also need $p_{k+1} \le 1$, which is easily checked: $1-p_{k+1} = \frac{1}{2}((p_k-1)^2 + (1-t)) \ge 0$).
Starting with $p_0(t) = 1$, this generates a sequence of polynomials $p_n(t)$ decreasing pointwise to $\sqrt{t}$ on $[0, 1]$.
Now, substitute $t = x^2$ and let $q_n(x) = p_n(x^2)$.
The iteration becomes:
$q_{n+1}(x) = p_{n+1}(x^2) = \frac{1}{2}(x^2 + 2p_n(x^2) - p_n(x^2)^2)$
$q_{n+1}(x) = \frac{1}{2}(x^2 + 2q_n(x) - q_n(x)^2)$
And the property $1 \ge p_n(t) \ge p_{n+1}(t) \ge \sqrt{t}$ becomes:
$1 \ge q_n(x) \ge q_{n+1}(x) \ge \sqrt{x^2} = |x|$ for $x \in [-1, 1]$.