Given a scheme $X$ and a quasicoherent sheaf of algebras $\mathscr{R}$ on it. Vakil's FOAG, section 17.1.2, page 470 says that the relative spec $\beta: Spec \mathscr{R} \to X$, representing the following functor
$$ (\mu: W \to X) \mapsto \{(\alpha: \mathscr{R} \to \mu_* \mathscr{O}_W)\} $$
, i.e., there is a natural isomorphism between the following two sets
Does it imply that $Spec$ is left ajoint functor to the functor $(\cdot)_*\mathscr{O}_{(\cdot)}: (Sch/X)^{Op} \to \mathscr{O}_X\text{-Alg}$ that taking $\mu: W \to X$ to $\mu_* \mathscr{O}_W$?
Neither Vakil nor Stacks#01LQ says it's a left adjoint functor explicitly. However, Vakil mentions that $\mu_* \mathscr{O}_W$ maybe not quasicoherent (as in When is the pushforward of a quasi-coherent sheaf quasi-coherent? Hartshorne proof too). Being quasicoherent seems to be indispensable in the definition of the relative spectrum. Is this the reason for not being a left adjoint? Or is it a left adjoint?
Thank you in advance!

