0

I cannot solve this integral, can anyone help me?

$$\int_0^\infty \left(x^3 \sum_{n=1}^{+ \infty} e^{-nx} \right)dx$$

Thank you in advance

Seirios
  • 34,083
Chaos
  • 309

1 Answers1

7

By the change variable $t=nx$ we have $$\int_0^\infty x^3e^{-nx}dx=\frac{1}{n^4}\int_0^\infty t^3e^{-t}dt=\frac{\Gamma(4)}{n^4}$$ so $$\int_0^\infty (x^3 \sum_{1}^ \infty e^{-nx})dx=\Gamma(4) \sum_{1}^ \infty\frac{1}{n^4}=\Gamma(4)\zeta(4)=3!\times \frac{\pi^4}{90}$$