How to solve $f_1,f_2,f_3$ from the following simultaneous PDEs:
$\frac{\partial f_3(x,y)}{\partial y}-\frac{\partial f_2(z,x)}{\partial z}=y^2,$
$\frac{\partial f_1(y,z)}{\partial z}-\frac{\partial f_3(x,y)}{\partial x}=z^2,$
$\frac{\partial f_2(z,x)}{\partial x}-\frac{\partial f_1(y,z)}{\partial y}=x^2.$
Attempt:
I can intutively say that $f_1(y,z)=\frac{z^3}{3}$, $f_2(z,x)=\frac{x^3}{3}$ and $f_3(x,y)=\frac{y^3}{3}$ satisfy the above equations.
But how to say it in a generalized way?