$\displaystyle\int\frac{\mathrm dx}{10x-3}=$ ?
Obviously, if we say $\,u=10x-3\,,\,$ then integration becomes
$\displaystyle\frac{1}{10}\int\frac{\mathrm du}{u}=\frac {1}{10}\ln(10x-3)+c$
However, I approach this question like
$\displaystyle\frac{1}{10}\int\frac{\mathrm dx}{x-\frac{3}{10}}\;,\;\;$ then $\;\;\dfrac{1}{10}\ln\left(x-\dfrac{3}{10}\right)+C.$
What am I missing ?