2

$\displaystyle\int\frac{\mathrm dx}{10x-3}=$ ?

Obviously, if we say $\,u=10x-3\,,\,$ then integration becomes

$\displaystyle\frac{1}{10}\int\frac{\mathrm du}{u}=\frac {1}{10}\ln(10x-3)+c$

However, I approach this question like

$\displaystyle\frac{1}{10}\int\frac{\mathrm dx}{x-\frac{3}{10}}\;,\;\;$ then $\;\;\dfrac{1}{10}\ln\left(x-\dfrac{3}{10}\right)+C.$

What am I missing ?

Angelo
  • 13,952
Fuat Ray
  • 1,342

1 Answers1

0

$$\ln(\frac{a}{b})=\ln(a)-\ln(b)$$ so $\frac{1}{10}\ln(x-\frac{3}{10})+C=\frac{1}{10}\ln(\frac{10x-3}{10})+C=\frac{1}{10}\ln(10x-3)-\frac{1}{10}\ln(10)+C$ but $-\frac{1}{10}\ln(10)+C$ is constant so let it equal $K$ then $$\frac{1}{10}\ln(10x-3)-\frac{1}{10}\ln(10)+C=\frac{1}{10}\ln(10x-3)+K$$

pie
  • 8,483