Consider two random variables $\xi$ and $\eta$ with following common distribution
$p_{i,j} = P(\xi = i, \eta = j)$:
$$p_{0,0} = 0, \quad p_{1,1} = p_{-1,1} = p_{1,-1} = p_{-1,-1} = \frac{\epsilon}{4}, \quad p_{0,1} = p_{0,-1} = p_{1,0} = p_{-1,0} = \frac{1}{4} -\frac{\epsilon}{4}, $$
where $0< \epsilon < 1$. It is easy to find the distribution of each random variable:
$$P(\xi = 0) = P(\xi = 0, \eta = 0) + P(\xi = 0, \eta = -1 ) + P(\xi = 0 , \eta = 1) = $$
$$ =p_{0,0} + p_{0,-1} + p_{0,1} = 0 +\frac{1}{4} -\frac{\epsilon}{4} + \frac{1}{4} -\frac{\epsilon}{4} = \frac{1}{2} -\frac{\epsilon}{2}, $$
$$P(\xi = 1) = P(\xi = 1, \eta = 0) + P(\xi = 1, \eta = -1 ) + P(\xi = 1 , \eta = 1) = $$
$$ =p_{1,0} + p_{1,-1} + p_{1,1} = \frac{1}{4} -\frac{\epsilon}{4} + \frac{\epsilon}{4}+ \frac{\epsilon}{4} = \frac{1}{4} + \frac{\epsilon}{4}, $$
$$P(\xi = -1) = P(\xi = -1, \eta = 0) + P(\xi = -1, \eta = -1 ) + P(\xi = -1 , \eta = 1) = $$
$$ =p_{-1,0} + p_{-1,-1} + p_{-1,1} = \frac{1}{4} -\frac{\epsilon}{4} + \frac{\epsilon}{4}+ \frac{\epsilon}{4} = \frac{1}{4} + \frac{\epsilon}{4}, $$
$$P(\eta = 0) = P(\xi = 0, \eta = 0) + P(\xi = -1, \eta = 0 ) + P(\xi = 1 , \eta = 0) = $$
$$ =p_{0,0} + p_{-1,0} + p_{1,0} = 0 +\frac{1}{4} -\frac{\epsilon}{4} + \frac{1}{4} -\frac{\epsilon}{4} = \frac{1}{2} -\frac{\epsilon}{2}, $$
$$P(\eta = 1) = P(\xi = 0, \eta = 1) + P(\xi = -1, \eta = 1 ) + P(\xi = 1 , \eta = 1) = $$
$$ =p_{0,1} + p_{-1,1} + p_{1,1} = \frac{1}{4} -\frac{\epsilon}{4} + \frac{\epsilon}{4}+ \frac{\epsilon}{4} = \frac{1}{4} + \frac{\epsilon}{4}, $$
$$P(\eta = -1) = P(\xi = 0, \eta = -1) + P(\xi = -1, \eta = -1 ) + P(\xi = 1 , \eta = -1) = $$
$$ =p_{-1,0} + p_{-1,-1} + p_{-1,1} = \frac{1}{4} -\frac{\epsilon}{4} + \frac{\epsilon}{4}+ \frac{\epsilon}{4} = \frac{1}{4} + \frac{\epsilon}{4}. $$
Thus, each of the random variables takes on three different values $\{ -1,0,1 \}$ with non-zero probabilities:
$$\xi \sim \begin{cases} -1, \, \frac{1}{4} + \frac{\epsilon}{4}, \\ 0, \, \frac{1}{2} -\frac{\epsilon}{2}, \\ 1, \, \frac{1}{4} + \frac{\epsilon}{4} ,\end{cases} \quad \eta \sim \begin{cases} -1, \, \frac{1}{4} + \frac{\epsilon}{4}, \\ 0, \, \frac{1}{2} -\frac{\epsilon}{2}, \\ 1, \, \frac{1}{4} + \frac{\epsilon}{4} .\end{cases}$$
We can easily find, that
$$E\xi = 0, \quad E\eta = 0.$$
Now compute
$$E\xi \eta = \sum ij \cdot p_{i,j} = 0+ 1 \cdot \frac{\epsilon}{4} + (-1)\cdot \frac{\epsilon}{4} + (-1) \cdot \frac{\epsilon}{4} + 1 \cdot \frac{\epsilon}{4} + 0 +0 +0 + 0 = 0.$$
But, it's obvious that
$$P(\xi = 0, \eta = 0) = 0 \neq \frac{1}{4} (1-\epsilon)^2 = P(\xi =0) P(\eta = 0).$$
Hence, $\xi$ and $\eta$ are dependent.