Today I tried to get Fourier transform of step function ($u(t)$). But I got a result which seems is not correct. I want to know what is incorrect in my work?
With attention to this relation: \begin{align} \mathrm{u(t)=\frac{1}{2}[1+sgn(t)]} \end{align} we know that: \begin{align} \mathfrak{F}(u(t))=\left (\pi\delta(\omega) + \frac{1}{j\omega}\right ) \end{align}
Today I tried to experience another way. Suppose:
$$ \begin{align} g(t) = \begin{cases} e^{-at} & \text{for } t > 0\\ 0 & \text{otherwise } \end{cases} \end{align} $$
So:
$$ \begin{align*} \mathfrak{F}(g(t)) = &\int_{0}^{\infty} e^{-at} e^{-i\omega t}\, dt\\ &=\int_{0}^{\infty}e^{-(a+i\omega) t}\, dt\\ &=\big[ \frac{e^{-(a+i\omega) t}}{-(a+i\omega)} \big]_{0}^{\infty}\\ &=\frac{1}{a+i\omega} \end{align*} $$
It is obvious that $\lim\limits_{a\to 0^+}g(t)= u(t)$. Thus:
$$ \begin{align} \mathfrak{F}(u(t)) &= \mathfrak{F}(\lim\limits_{a\to 0^+}g(t))\\ &=\lim\limits_{a\to 0^+}(\mathfrak{F}(g(t))\\ &=\lim\limits_{a\to 0^+}(\frac{1}{a+i\omega})\\ &=\frac{1}{i\omega} \end{align} $$ What is incorrect in my work?
sgnfunction. – hasanghaforian Apr 12 '23 at 22:18