The Short Version
Is there a way to simplify this expression?
$$ \left(\left(\left(d × \left(\frac{j}{2}\right)^2\right)^2 − \frac{1}{27} × \left(\frac{j^2}{2 s}\right)^6\right)^\frac{1}{2} + d × \left(\frac{j}{2}\right)^2\right)^\frac{1}{3} + \frac{1}{3} × \left(\frac{j^{2}}{2 s}\right)^2 × \left(\left(\left(d × \left(\frac{j}{2}\right)^2\right)^2 − \frac{1}{27} × \left(\frac{j^2}{2 s}\right)^6\right)^\frac{1}{2} + d × \left(\frac{j}{2}\right)^2\right)^\frac{−1}{3} − \frac{j^2}{2 s} $$
Specifically, I'd like to condense the cube root portion and the inverse cube root portion into a single root, if possible.
The Longer Version
We have five positive-valued variables:
- $s_{max}$
- $j_{max}$
- $a_{max}$
- $v_{max}$
- $d_{max}$
We also have the function $\operatorname{Min}(n_1,\, n_2,\, …,\, n_k)$, which returns the input with the lowest value.
Finally, we have three variables whose values are each based on combinations of the previously-defined variables:
$$ j_{limit}\,=\,{\operatorname{Min}\begin{pmatrix} \left(j_{max} × \frac{s_{max}^0}{0!}\right)^\frac{1}{1},\\ \left(a_{max} × \frac{s_{max}^1}{1!}\right)^\frac{1}{2},\\ \left(v_{max} × \frac{s_{max}^2}{2!}\right)^\frac{1}{3},\\ \left(d_{max} × \frac{s_{max}^3}{3!}\right)^\frac{1}{4} \end{pmatrix}} $$
$$ a_{limit}\,=\,{\operatorname{Min}\begin{pmatrix} a_{max},\\ \left(v_{max} × j_{limit} + \left(\frac{j_{limit}^2}{2 s_{max}}\right)^2\right)^\frac{1}{2} - \frac{j_{limit}^2}{2 s_{max}},\\ \left(\left(\left(d_{max} × \left(\frac{j_{limit}}{2}\right)^2\right)^2 − \frac{1}{27} × \left(\frac{j_{limit}^2}{2 s_{max}}\right)^6\right)^\frac{1}{2} + d_{max} × \left(\frac{j_{limit}}{2}\right)^2\right)^\frac{1}{3} + \frac{1}{3} × \left(\frac{j_{limit}^{2}}{2 s_{max}}\right)^2 × \left(\left(\left(d_{max} × \left(\frac{j_{limit}}{2}\right)^2\right)^2 − \frac{1}{27} × \left(\frac{j_{limit}^2}{2 s_{max}}\right)^6\right)^\frac{1}{2} + d_{max} × \left(\frac{j_{limit}}{2}\right)^2\right)^\frac{−1}{3} − \frac{j_{limit}^2}{2 s_{max}} \end{pmatrix}} $$
and
$$ v_{limit}\,=\,{\operatorname{Min}\begin{pmatrix} v_{max},\\ \left(d_{max} × a_{limit} + \left(\frac{a_{limit}^2}{2 j_{limit}}\right)^2\right)^\frac{1}{2} - \frac{a_{limit}^2}{2 j_{limit}} \end{pmatrix}} $$
The third option for the value of $a_{limit}$ stands out for being so much longer than all the other expressions in the values of the limit-variables. Can it be condensed any? Is there a better way to write it? As-is, it feels very unsatisfying.