Let $a_1,\ldots,a_p$ be positive real numbers. Let $A = (a_{ij})_{p\times p}$ where $a_{ij} = 1/(a_i+a_j)$. How to prove that
$$\det A = 2^{-p}\prod_{j=1}^p \frac{1}{a_j}\prod_{1\leq j<k\leq p} \biggl(\frac{a_j-a_k}{a_j+a_k}\biggr)^2.$$
The case when $p=2$ is obvious and I am stuck in the inductive procession.