Assume $f_\theta$ is pdf of a continuous random variable. If we can interchange integration and derivative operation, then $$ \begin{align} \mathbb{E}_\theta (\frac{\partial}{\partial \theta} \log f_\theta) &= \int_{\mathbb{R}^n} \frac{\partial}{\partial \theta} \log f_\theta(x))\cdot f_\theta(x) dx \\ &= \int_{\mathbb{R}^n} \frac{\partial}{\partial \theta} f_\theta(x) dx \\ &= \frac{\partial}{\partial \theta} \int_{\mathbb{R}^n} f_\theta(x) dx \\ &= \frac{\partial}{\partial \theta} 1 \\ &= 0 \end{align} $$
But why can we do that? I have tried to use dominated convergence theorem, but cannot find a function to bound $\frac{\partial}{\partial \theta} f_\theta$.