For function $f(x)=\max_i x_i, x\in\mathbb{R}^n$. We define the Fenchel conjugate as $$ f^*(x^*) = \sup_x\Big\{ \langle x^*,x\rangle-f(x)\Big\}\,. $$
The standard subdifferential for $f(x)$ as $$ \partial f(x)=\Big\{x^*\in E: \forall y\in E\quad f(y)\geq f(x)+\langle x^*,y-x\rangle\Big\}\quad \text{if } x\in \operatorname{dom}(f)\,. $$ In the lecture note, it says
$$ x^*\in \partial f(x) \iff f^*(x^*)+f(x)=\langle x^*,x\rangle $$ I am confused with this statement.